

Program participants: - Agip - Conoco Phillips - Exxon Mobil - Hydro - Petrobras - Shell - Statoil - Total

	TEGY	REPORT		
MUST, Multivariate S www.must.as	trategies as	TITLE		
Centre of Technology and Innovation Kjolnes Ring 30 N-3918 Porsgrunn, NORWAY Enterprise No.:		NOEC Field Validation part II;- the Mowing Window Approach		
NO 982768772MVA Phone: +47 35 57 40 00 Fax: +47 35 57 40 10		AUTHOR(s) Bjørn Grung, University of Bergen Frode Brakstad, MUST Sten-Richard Birkely, Akvaplan-Niva AS		
		CLIENT ERMS project / Ivar Singsaas	, SINTEF	
Rapport nr.	Klassifikasion	CLIENTS REF.		
RTD05 F05005	Open	Project no.: 66136730 /ref.no.	.:04-0013	
	ISBN	Prosiekt nr. RTD05/03	Sider/appendixs 63/1	
Elektronisk adresse for	r rapport	Project manager (navn/sign.)	Checked by (navn/sign.)	
G:/DATA/RAPPORTER/RT	005_05.DOC	Frode Brakstad	Morten Raaholt /	
DAT0 2005-06-24		Accepted by (name, position, signature) F.Brakstad, Managing Director		
Summary Field data has been ar	alyzed to find e	estimates of pure NOEC (No o	bserved Effect Concentrations) values.	

The data has been extracted from the Norwegian MOD (Miljø Overvåking Databasen), and includes the grain size (as μ m), the level of petrogene chemicals in sediments (ppm or ppb) and the benthic fauna. By the selected strategy "Mowing Window Analysis" and the multivariate classification method SIMCA we have been able to find "pure" and individual NOEC of all chemicals except the less toxic Barium. The most accurate values are found for the trace metals, while the values for THC and decalines are less accurate as their weathering in the environment is relatively fast.

All field NOECs are highest at samples characterized by small grain size (< as e.g mud) and decreases with increasing grainsize upto roughly 110 μ m. At grainsizes larger than 110 μ m, the NOEC values seem to roughly have the same value as the one found in the interval 90-110 μ m. As a consequence, the benthic fauna do have higher tolerance to petrogen chemicals at finer sediments (mud-silt) than at sediment with average grain size larger than 110 μ m (fine sand-sand). This is the effect observed in the data useful for validation purposes. Although the reason for grain size dependency of the field NOECs may be several, there have not been any experiments in this study to sort out these.

The study has been run in parallell with another R&D project exploring the SSD (Species Sensitivity Distribution) approach. The SSD approach, yielding fPNECS, is reported separately, but the results of the two studies are briefly compared and discussed in this report.

There is an overall fair agreement between the field NOEC values (i.e. within an order of magnitude) as compared to the predicted PNECs (Equilibrium Partitioning Method) from literature. There is however a significant discrepancy between the Mercury and Chromium value reported from literature (seem to be far too high) and the ones that are observed in field data.

KEYWORDS	ENGLISH	NORWEGIAN		
GROUP 1	NOEC field values, validation	NOECverdier fra felt data, validering		
GROUP 2	Mulitvariate Analysis, Mowing Window Analysis, SIMCA Classification	Multivariat Analyse, Vindu teknikker, SIMCA klassifikasjon		

1

Content

Summary	4
1. Introduction	6
2. Theory	6
3. Data	
4. Results	
5. Comparison of field NOECs and PNECs from literature	
6. Definitions	
7. References	
8. Appendix 1 Validation of sensitive species according to the Moving Window M	46 Iodel

Summary

The goal of this project (ERMS Task 5 Validation) has been to develop environmental effect concentrations of toxic stressors from field data. The project has been performed along two approaches; *i*) the Mowing Window Modeling (MWM) Approach where advanced multivariate statistics have been applied to the data revealing "pure" No Observed Effect Concentrations (NOECs) and *ii*) the Species Sensitivity Distribution (SSD) on the same data revealing 5% risk fPNECS. The data includes a validated part of the data in the Norwegian database referred to as MOD ("Miljøovervåkingsdatabasen").

This report gives the results from the MWM approach, aiming to:

1) validate predicted values from literature or laboratory, and

2) suggest NOECs to be used in the final ERMS modelling (Predicted Risk Assessments) for the Norwegian continental shelf.

To obtain the goal to deliver "pure" NOECs for each toxic stressor, it is necessary to somehow sort out the problems that arise from the correlation between the different toxic stressors present (or else the most toxic stressors will influence and mask the less toxic stressor). Sorting out correlation includes either to resolve the problem of correlation among toxic stressors, or as a minimum, quantify and correct for the correlation among the stressors. Furthermore, the grain size should be taken into account, as shown as an outcome of the dataanalysis in part 1 of the validation.¹

By the MWM approach we have succeed to identify "pure" and accurate NOECs for all trace metal elements except Barium (which seem to have a low toxicity). For each toxic stressor, the NOEC values vary with grain size. Note that the strong correlation between NOEC values for a specific chemical stressor and the grain size is not an assumption in this work, but an outcome from the data analysis. At average grain size less than roughly 110 µm, the NOEC value increase with decreasing average grain size. The interpretation is that the tolerance of the benthic fauna is higher the lower the grain size for grain sizes $< 110 \,\mu$ m. For average grain sizes $> 110 \,\mu\text{m}$ the NOEC value seem to be constant (i.e. equal to the one found at 110 μm). The paraffins as decalines and the paraffinic content included in the parameter THC are relatively rapid weathered. Thus the level of the paraffins at sampling time (the value recorded in the MOD) is probably too low as compared to the effect that is found in the benthic fauna at the time of sampling. We therefore believe that the NOECs determined for the paraffins are too low. This will be a general problem for all kind of data analytical methods applied to the MOD data. The problems of weathering is less for the aromatics as they are more resistant to weathering, but still we believe that these also may be somewhat too low (or conservative). The "pure" field NOECs are given in the following table:

¹¹ Brakstad, Frode and Trannum, Hilde Cecilie (2005). Field validation 1. ERMS report no. 13

	Grain size	•				
Chemical	110 µm	90 µm	70 µm	50 µm	30 µm	10 µm
Ва	690	532	597	921	2010	1520
Cd	0.020	0.020	0.021	0.043	0.057	0.106
Cr	5.43	5.57	5.70	9.04	23.90	33.80
Cu	1.17	1.60	2.24	3.80	7.25	11.06
Hg	0.010	0.010	0.013	0.014	0.02	0.05
Pb	6.47	7.80	6.00	12.90	18.30	21.50
Zn	6.80	9.77	11.82	17.94	44.40	67.90
Decalins	0.058	0.036	0.032	0.084	0.021	0.026
NPD	0.011	0.014	0.035	0.037	0.061	0.093
PAH	0.009	0.032	dnp	dnp	0.070	0.110
ТНС	8.00	8.11	9.40	9.73	8.87	21.40

Table S1. The observed NOECs derived from the database MOD by the Moving Window approach (dnp: data not present). Note that the NOEC values for the decalina sand the THC is most probably far too low (see discussion in report).

The derivation method used to determine the field PNECs from the –SSD approach (UiO part of task 5 extended) will be presented in a separate report, although the results are briefly discussed in this report. The full comparison of the results from the 1) SSD approach and 2) the Moving Window approach will be presented in a separate memo.

Note that there is **no assumption** in this MWM work about grain sizes. The data analysis is unsupervised. We chose to perform individual analyses in the various grain size intervals because we expect the naturally occurring benthic fauna to be dependent upon the grain sizes. This information is present in the MOD, and to us it made sense to make use of it. It then turns out that the NOECs change as the grain sizes change. Again – this is not an assumption. This is an outcome of the analysis. It is furthermore interesting to observe that the NOEC dependency upon grain size is less severe as the grain size increases. Again, this is not an assumption.

We have followed the intention of the project; let the field data (not an a priori model) tell us about the tolerance of the benthic fauna to the different toxic stressors. This work is a pioneering work. We are probably the first research group in the world that has succeeded in separating the individual effects from several correlated chemical stressors in a natural system from each other. Thus, we believe that we have to live with the situation that the result it is not so strongly supported in the scientific community yet.

1. Introduction

Environmental monitoring of the effects of the oil related activity in the Norwegian sector is carried out by analyzing the benthic fauna found in samples taken from the sea bed. In addition to the biological data, there exists a set of chemical analyses that characterize the state of the fields with regards to the concentration of various metals and organic compounds in the sediment samples. These two types of data are related, as the environmental disturbance is expected to be more severe in a region with higher concentrations of the toxic stressors. Thus, establishing safety limits for the levels of various metals and organic compounds is of great interest.

There are many difficulties associated with modeling the biological effect of increasing concentrations of a toxic stressor. The grain size of the particles varies widely between stations, and different species thrive in different environments with regards to grain size. As the grain size of the sediment decreases, so does the toxicity of a chemical. It is therefore not possible to establish one single concentration that describes a safe level for the chemical independent of the grain size of the sediments.

Furthermore, any statistical analysis of the data is made more difficult due to correlations among the various chemicals present. Generally speaking, an increase in the level of one chemical is associated with the increase of other chemicals of the same type. Stations having a high concentration of given heavy metal, tend to contain high concentrations of other heavy metals as well. This makes it difficult to establish acceptable individual and independent concentration limits for the various toxic stressors.

The environmental effect of an increase in the level of a chemical is not immediate. The fauna must be given time to respond to the change in concentration. However, the chemical and biological analyses are performed on samples taken at the same time. Sites with high concentrations may therefore appear undisturbed if the increase in pollution is recent.

In a previous project, preliminary NOECs were established for a variety of metals and organic compounds based on a data from a small set of stations [1]. In the current project, the data material is vastly increased as the complete MOD data base is used. The reported NOECs in the present study are therefore better estimates of the field NOECs for the NCS.

2. Theory

Multivariate data analysis based on latent variables (LV) is used to determine the NOECs reported in this work. A latent variable is any linear combination of the original data. Thus a latent variable may be a factor from correspondence analysis, a PCA axis or a Partial Least Squares (PLS) component. The fundamental technique employed herein is Principal Component Analysis [2-6] for data exploration, and Soft Independent Modeling of Class Analogies (SIMCA) for classification [7-9]. A brief description of these methods is given in appendix 1.

Latent variables

Correlations among predictor variables always exist in historical data. Correlating variables contain, at least partly, the same information. Correlation is easily visualized in the common

scatter plot. In the scatter plot displayed in Fig. 1, the two variables x1 and x2 are perfectly negatively correlated. High values for x1 are associated with low values for x2, and vice versa.

Fig 1. Scatter plot of two perfectly correlated variables.

The two measured variables in Fig. 1 can be combined into a single, mathematically constructed latent variable without loss of information. In Fig. 2, this is shown.

Fig 2.The latent variable (LV) constructed using two perfectly correlated variables.

The position of the four samples on the latent variable indicates their numerical value for this new value. This value is referred as the *score* of the object (or sample). The contribution from each of the variables to the latent variable is referred to as the variable's *loading*. The loading is related to the cosine of the angle between the latent variable and the variable in question. A high loading implies a large contribution from the variable to the latent variable. In Fig. 2, the two variables have approximately equal loadings, and thus contribute equally to the latent variable.

The relationship between the measured and the latent variables is expressed in eq. 1.

 $\mathbf{w} = p_1 \, \mathbf{e}_1 + p_2 \, \mathbf{e}_2 \quad (1)$

Here, w designates the unit vector along the latent variable. p_1 and p_2 represents the loadings with regards to variable 1 and 2, respectively. \mathbf{e}_1 and \mathbf{e}_2 represents the unit vectors along the

measured variables. Eq. 1 shows that the latent variable is a linear combination of the measured variable.

It is important to understand that replacement of the two measured variables x1 and x2 with the latent variable LV results in *absolutely no loss of data or information*. This is due to the perfect correlation between the two variables.

Exact correlations or no correlations are rarely seen in real data. Real data do however contain something inbetween, so called partial correlations. This makes latent variables immensely useful for data exploration, classification and modeling. In Fig. 3, the latent variable for two partly correlated variables is shown.

Fig 3. The latent variable for partly correlated variables

As opposed to the situation in Fig. 2, the samples do not lie on the latent variable. Rather, they are distributed around the latent variable. Fig. 4 illustrates how the scores of the objects can be found. For illustrative purposes only one object is shown in Fig. 4.

Fig. 4. Scores and residuals for partly correlated data.

The object's score (coordinate or value for the latent variable) is found by projecting the object onto the latent variable. In fig. 4, this is illustrated by the line going from the object down to the latent variable at a right angle. The score, t, is the distance from the origin to this point. The *residual* **e** is the distance from the object to the latent variable.

Mathematically, an object vector \mathbf{x}_k can be written as

$$\mathbf{x}_{\mathbf{k}} = t_{\mathbf{k}} \, \mathbf{w} + \mathbf{e}_{\mathbf{k}} \tag{2}$$

Referring to the latent variable as a model of the data, objects with small residuals are said to be well explained by the model.

A latent variable is simply a linear combination of the measured variables. Different criteria for calculating the linear combinations lead to different latent variables. An important latent variable is the *principal component* (PC), which is the latent variable that minimizes the squared sum of residuals \mathbf{e}_k for the set of samples. Another way of saying this is that the PC is the line that best fits the data. This criterion makes principal components excellent for visualizing data, but they are also used for classification and regression modeling. Data analysis based on principal components is referred to as Principal Component Analysis (PCA).

Visualizing data using principal component analysis The extraction of one principal component for a data set **X** can be written as

$$\mathbf{X} = \mathbf{t}_1 \mathbf{p}_1^{\mathrm{T}} + \mathbf{E}$$
(3)

 \mathbf{t}_1 is a column vector containing the score of all objects with regards to the PC. \mathbf{p}_1 is a vector containing the loadings of all variables. Superscript ^T denotes the transpose of a vector (or a matrix). The matrix \mathbf{E} contains the residuals – the part of the variation not explained by the PC. Thus, any data matrix can be written as the sum of the outer product of two vectors \mathbf{t} and \mathbf{p} , and a residual matrix.

It is possible to extract more than one PC. Scores and loadings exist for these PCs as well. Subsequent PCs are all orthogonal to each other. Using two principal components, eq. 3 becomes

$$\mathbf{X} = \mathbf{t}_1 \mathbf{p}_1 + \mathbf{t}_2 \mathbf{p}_2 + \mathbf{E} = \mathbf{T} \mathbf{P}^{\mathrm{T}} + \mathbf{E}$$
(4)

The matrix \mathbf{T} contains the score vectors as columns. The matrix \mathbf{P} contains the loading vectors as columns.

The first two principal components are extremely useful, as they are the basis for the best two-dimensional scatter plot of any data matrix. Traditional scatter plots are obtained by plotting two variables against each other. Such plots are of course useful, but their inherent weakness is that the information displayed is only related to the two variables plotted. The use of principal components as axes, instead of picking two measured variables, create a two dimensional plot *where all variables contribute*. The advantage of this approach, as opposed to the traditional scatter plot, increases as the number of measured variables increases.

The PCA scatter plot displaying information about the objects (samples), is referred to as a score plot. Objects close to each other in the score plot, are similar objects. In addition to the distance criterion, the angle between object vectors in such a plot contains important information. Thus, groupings in such plots contain valuable information about the nature of the samples. Similar samples cluster in such a plot, while dissimilar samples are separated. Figure 5 displays a score plot based on two PCs. Clearly, two groups of samples can be seen.

In addition, this data set contains an atypical sample that is separated from the two major groupings.

Fig. 5. Score plot using the first two principal components. Two main groups of samples are clearly seen. In addition, the data contains an outlying sample.

The score plot does not display any information about the correlation of the variables. To obtain this, a different scatter plot (also resulting from PCA) must be studied. The scatter plot displaying information about the correlation structure of the variables is referred to as the *loading plot*. Such a plot is shown in Fig. 6. Again, groupings in the plot indicate similarities.

Fig. 6. Loading plot using the first two principal components. Three groups (A,B and C) of variables are observed.

Three main groups (A, B and C) of variables are observed. Inside each group, the variables are positively correlated. Groups C and A are positioned on opposite sides of the origin, at an angle of about 180° degrees relative to each other. This implies that the two variable groups are negatively correlated. Objects with a high value for the variables in group A tend to have small values for variable C, and vice versa. Group B lies at angle of about 90° to the other two groups. Thus, the variables in group B contain information that is not found in the other two groups. It is not possible to say anything about the values of the variables in group B based on the values of the variables in groups A and C.

It is possible to combine the score and loading plots into *biplots* [10].

To summarize, principal components represent an excellent tool for visualizing data. The reason is three-fold.

1) All variables and all objects contribute, albeit in a different manner, to the principal components.

2) The minimization criterion used when defining the PCs ensures that no two-dimensional plot is better suited for explaining the main trends in the data.

3) Interpretation of score and loadings plot is easy

As will be shown in the next section, the usefulness of principal components extends far beyond mere data exploration.

SIMCA - classification using principal components

Sample classification is important in a variety of fields. In the context of this project, it is important because one may perform a classification of the sampling sites according to the level of environmental disturbance. Numerous classification schemes exist, and most of these use distance (the definition of distance varies) as the classification criterion. Examples of such methods are dendrograms and the K nearest neighbor-technique.

In this work, the multivariate classification technique SIMCA (Soft Independent Modeling of Class Analogies) is used. In addition to Euclidean distance between samples, correlation structures are actively employed in the classification. This represents a major advantage over the purely distance based classification techniques, which invariable encounter problems once the data contains correlated variables.

SIMCA is a model based classification technique. Each predefined class is modeled separately and independently of the other classes. The modeling technique used in SIMCA is PCA, and the independent treatment of each class is extended to encompass the pretreatment procedures. The PCA model seeks to extract from the measured data \mathbf{X} the part of the variation that is *shared* by the objects of the class. This common variation is described by the PCA model, while the residuals (see eq. 4) contains the variation connected with the individual differences within the class (unique sample variation) and experimental noise.

The residuals are not discarded or ignored. Quite the contrary - they are actively used in the classification procedure. After a PCA model of a class has been built, other objects are classified as belonging to the class (or not) depending on their residual distance to the class model. Larger residuals indicate a lower degree of class membership. Thus, the model boundaries are defined using the class residuals.

The residual standard deviation (RSD) for object k is calculated using eq. 5.

$$s_k^2 = \frac{\mathbf{e}_k^{\mathrm{T}} \mathbf{e}_k}{M - A} \tag{5}$$

M is the number of variables measured. A is the number of principal components used in the model.

The RSD for each object is collected in a distance vector \mathbf{s} , and the RSD for the class is calculated using eq. 6.

$$s_{c}^{2} = \frac{\mathbf{s}^{\mathrm{T}}\mathbf{s}}{\mathrm{N}-\mathrm{A}-1} \tag{6}$$

N is the number of objects in the class.

While this establishes an average RSD based on the objects belonging to the class, the actual limit used when testing new objects is larger than this. The critical value s^2_{max} is found using an F-test using the proper degrees of freedom and α level.

$$s_{\max}^2 = s_c^2 \cdot F_{kritisk} \tag{7}$$

Fig. 7 displays a set of objects, the PCA model and the boundaries found according to eqs. 5-7.

Fig. 7. A set of samples (circles), the PCA model (central line) and the boundaries found using the residuals (outer lines).

As can be seen from fig. 7, the model is now closed along the direction of the PC. What remains is to establish maximum and minimum allowed values for the scores of objects belonging to the class. This procedure can be found in the reference literature. The final SIMCA model is displayed in fig. 8. All samples falling outside the constructed sylinder will be classified as outliers.

Fig 8. The final SIMCA model.

New objects are classified as belonging to the class if they are positioned inside the space spanned by the model. If they lie outside of the boundaries, they are rejected as members of the class. This is illustrated in fig. 9.

Fig. 9. Classification of new samples. The blue samples are used for building the model (the training set). The green samples are new samples shown to belong to the class. The red samples are rejected, as their residuals are too large. The yellow sample is rejected, as its score is too high.

In the illustrations above, a one component PCA model was used. In real cases, the number of PCs to use vary from 0 (a centre of gravity model) and upwards. The number of principal components to use increase as the number of underlying factors responsible for the variation in the data increases. Obtaining models of proper complexity is highly important, and several methods exist for this purpose.

Cross validating the number of principal components to use

The result of underestimating the number of PCs to use is an underfitted model. The residuals contain structural information, and the model both describes the class poorly and is of little use when classifying new objects. The simplest way of avoiding underfitting is of course to increase the number of PCs until most of the variance of the data is explained and modeled. This simple approach is extremely dangerous, as overfitted models are as unsuitable for classification as underfitted ones. An overfitted model fits the training set extremely well, but

the artificially small residuals leads to most new samples been rejected. This includes samples that actually belong to the class.

One popular technique for model dimension estimation is cross validation [11, 12]. This is an internal validation technique, as the same samples are used both for model construction and for model validation. This may seem statistically unsound at first, but great care is taken to simulate the use of an external validation set.

Several cross validation methods exist. They all have in common that the data is divided into several groups. All objects are members of a group. In the following explanation, the number of groups is assumed to be four. This is just to simplify the discussion.

Firstly, a PCA model is built of the objects that do not belong to group 1. Next, the objects in group 1 are classified using a 1-component model of the rest of the data (groups 2, 3 and 4). The success rate of this classification is registered. Next, the same objects are classified using a 2-component model of groups 2, 3 and 4, and its success rate registered. This procedure is repeated up to a predefined number of components, e.g., 10. All the classification results are saved for later comparisons. Then, group 1 is reentered to the data matrix, and group 2 is deleted. The classification routine described above for group 1 is repeated for group 2. Next, group 3 is deleted, etc. Finally, the classification success rates for all the one component models of all groups are added. The same is done for all the two component models, three component models, etc. If e.g. the three component model is used when building the final model. Such a situation is depicted in fig. 10.

Fig 10. Evaluating the cross validation results. Overall, the best classification is obtained using a three component model. This is then the proper choice when constructing the final model.

The final model is of course built using all the groups – the complete training set.

Cross validation is often preferable using an external validation set. Using samples as external validation samples necessarily leads to fewer samples being used when constructing the final model. This is unfortunate if the total number of samples is limited, as the robustness of a model generally increases as the number of samples included increases.

Identifying the important variables – discriminating power

The discussion so far has revolved around building models for data containing one class. In real life situations one usually has more than one class of samples. In the environmental impact setting, one might divide the data into three possible groupings or classes: Disturbed sites, undisturbed sites, and a transition zone where the impact of pollution is only beginning to show or are nearly recovered. Ideally, one wants a test sample to be classified as a member of only one such group. For this to be the case, variables that are able to distinguish between different groups of samples are needed. These variables may not be important when building the models of individual classes, but they are crucial when it comes to discriminating between classes. This is illustrated in fig. 11.

Fig 11. While *x1* is of no importance for modeling the two classes of samples, it is invaluable when it comes to separating the two classes.

As can be seen in figure 11, variable x^2 is the important variable when it comes to modelling the data. There is little internal variation in the level of variable x^1 for the red class. The same can be said about the blue class. However, it is impossible to say whether a new sample belongs to the red or the blue class if not variable x^1 is included in the analysis. Variable x^1 has a huge *discrimination power*, while variable x^2 has little or no such power.

In SIMCA, the discrimination power of a variable is calculated by first fitting the objects in the classes to their proper models. In fig. 11, this means fitting the red objects to the leftmost model and the blue objects to the rightmost model. The residual of the variable in question is calculated for both classes, and the values are added. Next, the objects are fitted to the *wrong* model. In fig. 11, the red objects are fitted to the rightmost model, and the blue objects to the leftmost model. Again the residuals of the variable in question are calculated for two fitting procedures, and the values added. The resulting number is divided by the total residual from the first fitting procedure. The higher this ratio, the better the discriminating power of the variable. The process is performed for each variable individually.

Variables with discriminating power above 3 are said to have a good discriminating ability.

The discriminating power of a variable is sensitive to such factors as size and shape of the models being compared. Therefore, it has been argued that a more robust measure of true discriminating ability is found by performing the test with zero component models (centre of gravity models). Thus all models will has spherical and similar form, and the discrimination powers will be more accurate. This is the approach used in this work.

Zero component models are typically found in multivariate classifications when only random (natural) variation is present. Thus, with only natural benthic variation present, with no systematic trends or strong differences in the benthic fauna due to external influences such as chemical stressors, a "zero component " model is to be expected. Mathematically this means that all samples are distributed randomly around a point in the multivariate space. In three variable dimensions (e.g. stations defined by counts of three species), such a model would resemble a sphere. This type of model is often referred to as a centre of gravity model. The new data entries are only classified toward the test model (no new PCA analysis is required). It is only important that the same parameters (species) are investigated

3. Data

The data analysis performed in this project is done on data from the MOD data base. In total, 2678 stations are included in the data base including chemical, sediment and biological data. Most of the analysis and modelleing work is done on the biological data. For 420 of the measured stations no biological analyses are registered in the data base. These stations were excluded from the data analysis.

The toxic effect of the metals and organic compounds varies with the grain size of the sediments. Therefore, the data set was divided into subsets depending on the grain size. Table 1 displays the grain size intervals used, and the number of stations found in each interval.

Grain size interval (µm)	Number of stations	Percentage of total (%)
0 - 20	241	11
20 - 40	212	9
40 - 60	122	5
60 - 80	301	13
80 - 100	783	35
> 100	599	27

Table 1. Grain size distribution of the MOD samples.

Each grain size interval was modeled separately.

To reduce the impact of heteroscedastic noise the biological data was square root transformed prior to analysis. All analyses were performed on mean centered and standardized data. Standardization is performed by dividing all occurrences of a variable with the variable's standard deviation. The net effect is to downsize the importance of the more abundant species, and to allow less frequent species to influence the models.

In addition to grain size, the concentration of the following metals and organic compounds was measured for the samples: Barium, cadmium, chromium, copper, mercury, lead, zinc, decalins, NPD, PAH and THC.

Unfortunately, chemical analyses have not been carried out for all the samples where the biological analysis has been performed. Table 1 shows that biological data exists for 783 stations in the grain size interval $80 - 100 \mu m$. Table 2 shows that chemical analyses are not

carried out for all of these samples, and that the number of analyses varies among the chemicals.

Ideally, all chemicals should have been quantified for all samples. The NOECs are based on *observed* values, as the name implies. It is self-evident that NOEC estimates are more robust for the chemicals being measured more often. The number of analyses follow the guideline of the Norwegian Pollution Autorities, and is the explanation to why the number of analyses is less for the organics than the trace metals².

Chemical	Number of analyses
THC	688
Barium	683
Lead	683
Zinc	683
Cadmium	680
Copper	680
Mercury	423
NPD	204
Decalins	157
Chromium	139
PAH	36

Table 2. The number of chemical analyses performed for 783 samples in the grain size 80 – 100 μ m interval.

Strategy and modeling

The fundamental assumption used in this work is that an increased concentration of a given chemical above a certain limit (the NOEC) results in the benthic fauna pattern undergoing changes, as illustrated in Figure 12.

²Statens Forurensingstilsyn (Norwegian Pollution Authorities), 1999,, 99:01;Retningslinjer for Miljøovervåking av Petroleumsvirksomheten på norsk sokkel, DEL II Sedimentovervåking. ISBN no. 82-7655-164-5.

Figure 12. An illustration of the FIELD NOECs (No observed Effect Concentration) of a toxic stressor vs the true NOEC

Thus we assume that when the level of a chemical (potential toxic stressor) increases above the background level (or at a level where no effect on benthic fauna is observed), it will sooner or later result in an observed effect on the benthic fauna. The highest *observed* level of the stressor, before it reaches the level where an effect is seen, is the level we have defined to be the field NOEC level.

This makes it possible to search for patterns in the biological data, and to relate these patterns to variations in the chemical concentrations. It is important to understand that the modeling approach described below is performed *only on the biology data – not on the chemical concentrations*.

It is important to be aware that the methodology used in this approach is <u>not based on any</u> <u>assumptions</u>. The data analysis is a so called unsupervised method. Sometimes this is referred to as soft modelling, as no external information, model or assumption is applied to the data. We only describe what is in the data. In the MOD data there is a strong and clear correlation between decreasing NOEC values (i.e. increasing toxicity) as the grain size increase. Surely there may be numerous other significant environmental parameters that may explain toxicity, but we have to use those that are included in the MOD database. Grain size is included. We are aware that the benthic fauna differs from environment to environment, depending on both abiotic (e.g. salinity, temperature, climate, depth, topography, grain size, currents etc.) and biotic factors (e.g. presence of predators, population density, biological preferences to physical factors etc.). However, we have tried to identify *the highest observed concentration of a specific chemical stressor present at a certain grain size interval where we at same time do not observe any response to the population of the benthic fauna.*

There is a consistency in all the results from this approach taking into account more than 2000 stations in the MOD from North to South in the North Sea (a distance close to the one from Oslo in Norway to Rome in Italy). But of course; the validation results have been found using the MOD, and ideally the results should be tested on data from other part of the world as suggested by the referees. This, however, has not been included in the project aim.

The preliminary NOEC were established in the previously mentioned report by Brakstad and Trannum (2005). It is important to be aware that these preliminary NOEC values were only starting values for the analysis. They were not in any way crucial to our work, as the proper level (i.e. the highest observed level where no effect on benthic fauna is evident) will be established by the method anyway.

Defining the training and test sets

Provided that the biology and chemistry data are related, the stations measured in the MOD data base may be categorized as belonging to one of three classes:

- 1) Undisturbed sites. The concentrations are at the background level, and no environmental effect is registered. These stations are modeled, and the resulting model describes the unpolluted state.
- 2) Disturbed sites. Here, the concentrations are so large that the benthic fauna clearly is disturbed. These sites are *not* used in the modeling, due to problems with correlating chemicals. It is not possible to identify the chemical responsible for the disturbance if several chemicals exceed the acceptable limit³.
- 3) Transition sites. Sites belonging to this category have all concentrations, except one, below a predefined safe limit⁴. Any disturbances in the fauna for these stations can be assumed to originate from the increased concentration of said chemical. The true state (disturbed or undisturbed) of these stations is found by comparing them to the model of the undisturbed sites.

The separation of the stations into these three categories for each grain size interval is of the utmost importance for the analysis to produce reliable results. However, the biology responds slowly to an increase in concentration. Thus, a site classified as disturbed due to high concentrations of the chemicals may show no sign of disturbance if the pollution is recent. This does not represent a serious issue for this approach, as stations classified as disturbed (category 2) are excluded from the analysis. Situations where concentrations of toxic stressors are back to normal, but where the fauna still is affected may occur. In this situations the fauna will separate out as an distinct group in the analysis of the undisturbed sites. This is a rare and constructed situation, as it require al lthe trace elements to be back on background level and still effect on the benthic fauna. We have not seen this situation in the data.

In a previous project (Brakstad F, and H.C.Trannum, 2005), preliminary and initial NOECs were reported. These values were used to classify the stations as belonging to one of the three classes mentioned above. A station was said to be undisturbed if the concentrations of all metals and all organic compounds were below the initial NOECs. Transition sites were defined as stations having one concentration above the previously defined NOECs. Every chemical has a separate set of transition sites.

Within each grain size interval, the stations belonging to category 1 (undisturbed sites) constitute the *training set* for all chemicals. Stations were not included in the set of undisturbed sites unless the concentrations of at least six of the in total eleven chemicals were quantified⁵. The number of such sites for each grain size interval is shown in Table 3.

Grain size interval (µm) Number of stations

³ Acceptable limit can be defines by e.g. statistical apppoach as one-side t-test (above background level)

⁴ Safe limit is the level of the toxic stressor where no obsevred effect is evident from e.g. benthic fauna

⁵ By including sites with few chemical measurements in the undisturbed set, we run the risk of accidentally including polluted sites. To avoid this, we chose to only include stations where more than 50% of the measurements were performed. Still we test the relevance with the outcome from the PCA analysis on the macro fauna data towards the increase of the level of the toxic stressor.

0 - 20	20
20 - 40	38
40 - 60	14
60 - 80	17
80 - 100	84
> 100	49

Table 3. The number of training set samples for each grain size interval. For the training set samples at least six concentrations are measured, and none of these are above the previously reported NOECs.

The *test set* for a chemical in any given grain size interval consists of the samples that have a suspiciously high concentration of one chemical, while the remaining concentrations are either below the previously reported NOECs or not reported. The number of samples included in each test set varies widely, as can be seen in Table 4. Thus we used information from the biology space to confirm the chemistry space (within each interval) when the cause-effect relationship was established.

Relative size (no. of stations) of reference vs test set is of no importance, as long as the same parameters are included (here: same species).

All levels below the preliminary NOEC (definition; see above) were considered as candidates for the undisturbed sites. Thereafter this hypothesis was justified/corrected according to the statistical analysis.

The grain size intervals were found from the distribution of all samples in the MOD. Thereafter as many as possible intervals were decided, but the number of intervals was balanced with the number of samples (species and toxic stressors). Thus we ended up with the suggested six intervals.

	Grain size interval					
Chemical	0 - 20	20 - 40	40 - 60	60 - 80	80 - 100	> 100
Ba	0	0	0	0	0	0
Cd	0	11	12	12	3	36
Cr	0	20	0	0	23	20
Cu	4	48	0	16	2	0
Hg	9	5	7	19	42	27
Pb	5	5	6	0	11	11
Zn	9	39	0	12	17	17
Decalins	0	0	0	0	24	5
NPD	8	0	0	5	0	0
PAH	4	14	0	0	0	0
THC	8	0	13	19	32	3

Table 4. The number of samples in the test sets for the various grain size intervals.

Relative size (no. of stations) of reference vs test set is of no importance, as long as the same parameters are included (here: same species).

For each chemical, the test sets were sorted in ascending order with regards to the concentration of the chemical. The sorted test sets were used to validate the assumption that the biology and chemistry data are related. This was done by doing a PCA on the count data. The chemistry data was *not* used in the PCA, but the resulting score plots still display groupings according to the chemistry. This is demonstrated in figs. 13-15.

The number of stations used in each training sets is shown in Table 3. The number of species varies, but several hundred species were used in all calculations. The test sets, containing stations with one, and only one, chemical above the predefined safe level, contained the same number of variables (species). The number of stations included in each test set is shown in Table 4. The accuracy of the results is of course dependent upon the amount of data available. The smaller the number of samples in the test set, the larger is the risk of the NOEC deviating from the "true" value (see definitions). However, this is why this statistic is referred to as No Observed Effect Concentration. It is a statistic based upon actual observations. Without increasing the number of observations, there is no way one can increase the accuracy of the results. The number of observations is at present limited to the database of MOD. Furthermore – we single out the lowest concentration that corresponds to an environmental effect. This, however, is not the value we report. After sorting the test set samples in descending order (with regards to the concentration of the stressor in question), we report the concentration of the station appearing after the station just identified. The risk of reporting too high concentrations is therefore greatly reduced. The effect of having a larger test set is usually an increase of the NOEC.

In figure 13, a score plot from the biology data of the Hg test set for the grain size 80 - 100 µm is shown. A cluster of samples in the centre of the plot is clearly seen. A few samples separate from the main group. In the figure, the numbering of the samples is related to the Hg concentration (the higher the number, the higher the concentration.). The sample with the lowest Hg concentration is number 180. It is the samples that are removed from the main group are those with a lower mercury concentration. *This happens, even if the chemistry data is not used for constructing this plot – only the biology data is modeled.* The clear groupings in the score plot indicate that the fundamental assumption that the biology data contains information about chemical concentrations is valid.

Fig. 13. A score plot of the Hg test set for the grain size interval $80 - 100 \mu m$.

Fig. 14 displays the results from a similar analysis of the Cr test set for the same interval. Note that the analysis of the biology data groupings related to the (unused) chemistry data appears The same interpretation can be made for this test set, as the low concentration samples again appear as outliers in the plot.

Fig. 14. A score plot of the Cr test set for the grain size interval $80 - 100 \mu m$.

Finally, fig. 15 displays a similar analysis of the Zn test set for this grain size interval. Here, it is the sample with the highest concentration that appears as an outlying sample (the direction of a principal component is not important as compared to the important relative position of samples along the principal component). Still, it shows that groupings related to the chemical composition of the samples can be observed in PCA score plots of biological data.

Fig. 15. A score plot of the Zn test set for the grain size interval $80 - 100 \mu m$.

It is important to understand that while the score plots in figs. 13 - 15 clearly group samples according to the concentration of the samples, this simple analysis is not enough to obtain NOEC values. To achieve this, one has to *compare* the undisturbed situation (the training set) to the set of samples possibly showing a minor disturbance (the test set). SIMCA classification is used to perform this comparison.

Comparing the training and test sets

The undisturbed sites (the training sets) were modeled using cross validated SIMCA models. All test sets were also separately modeled using cross validated SIMCA models.

Within a grain size interval the following models now exist:

- 1) *One* training set model, based on counts of *all species* for those stations where all concentrations are below the previously reported NOECs.
- 2) *Several* test set models, one for each chemical. Each model is based on counts of *all species* for the stations where the chemical in question is the <u>only one</u> above the previously reported NOEC

The training set model (for each grain size interval) was compared to each of the test sets. The comparison was done to enable models with better possibility of separating truly undisturbed sites from sites showing minor disturbance. During the comparison, species with a particular ability of discerning undisturbed sites from sites being disturbed by a specific chemical were

identified. The identification of species was done by studying the discriminating power of the species. Species having a discriminating power above 3.0, are traditionally seen as being able to discriminate between classes. After identifying the species that separate the undisturbed sites from sites showing, e.g. mercury disturbance, a new model of the *training set* was built. This new training set model is based solely on the species identified as having good discriminating power for the chemical in question (e.g., mercury). It is therefore well suited to identify stations where the chemical in question has caused a disturbance in the benthic fauna. It is, however, not useful for detecting other types of disturbance, as it is based only on the species that are characteristic for that specific type of disturbance (e.g., mercury). This means that one has to build many refined models of the training set within each grain size interval – one for each type of chemical disturbance.

Identification of the species to use when detecting cadmium induced disturbance for grain sizes above $100 \ \mu m$ is shown in Fig. 16.

Fig. 16. Identification of species characteristic of a certain type of disturbance

Each bar represents the ability of a species to distinguish between the undisturbed situation and the mercury disturbed situation. The horizontal line represents a discriminating power of 3.0, and the training set is thus remodeled using only the species rising above this limit. The procedure is repeated for the other chemicals. Different species are used in the different cases.

SIMCA-based estimations of NOEC

The test sets were fitted to the appropriate models of the training sets. The residual standard deviations of the test set members were calculated, and compared to the acceptance criterion. We selected the acceptance criteria to correspond to a confidence level of 95%. Sites having an RSD lower than the limit (i.e. the 95% confidence level) were said to show no sign of disturbance. Sites having too large an RSD were said to be slightly disturbed. The concentration of the chemical in question was above the "true" field NOEC for those samples. The bars in Fig. 17 show the RSD values for the decalins training set for the grain size interval $80 - 100 \mu m$. The decalin concentration increases moving from left to right in the figure.

Fig. 17. RSD plot for decalins training set in the grain size interval 80 – 100 μm (line is 95% confidence interval)

The RSD of the first objects is well below the acceptance criterion. The seventh bar, however, is far higher than acceptable. The corresponding sample is disturbed due to the decalin concentration. Its concentration is the lowest concentration for which a disturbance effect has been observed. The NOEC, which refers to the highest concentration obtained without a discernible effect, is the decalin concentration of the *previous* sample (number 6). The spatial and temporal variance are included in the multivariate model (SIMCA) based on F-statistics.

In the advent of all RSDs of the training set being above the limit, the NOEC from the previous work is kept⁶.

To obtain robust estimates of the NOEC values, this procedure was not attempted for test sets with fewer than five samples. As can be seen in Table 4, several chemicals have such small test sets for some of the grain size intervals. In such cases, an attempt was made to expand the test set by increasing the allowed concentration of the *other* chemicals (not the one we are investigating) by a small amount. The estimated NOEC value from the previous grain size interval was used. (As an example, the previously reported NOECs for the $40 - 60 \mu m$ interval was used when defining test sets for the $60 - 80 \mu m$ interval.) This approach cannot guarantee that the correlation problem is completely avoided, but at the very least it minimizes the effect.

For barium and some of the organic compounds at some grain sizes, the test sets were still empty or too small to be of any use. In such cases, the highest concentration of the chemical in the *training set* was used as the NOEC, which is a conservative approach

Producing the final NOEC values

Estimates of the NOECs for various chemicals as a function of the grain size was obtained by fitting a second order polynomial to the observed NOECs. The resulting equations and NOECs are presented in the Results section.

⁶ The following NOECs were taken from the previous work: Ba: All values. Cd: None. Cr: 60-80, 40-60. <20. Cu: >100, 40-60. Hg: None. Pb: >100, 60-80. Zn: 40-60. Decalins: 60-80, 40-60, 20-40, <20. NPD: >100, 80-100, 40-60, 20-40. PAH: >100, 80-100. THC: 20-40.

Identifying marker species

The SIMCA model contains a statistic that quantifies the ability a given variable has for differentiating between different classes in a data set. This is referred to as the discriminating power of a variable. In this project, a species' ability to discriminate between an undisturbed and a slightly disturbed site is of interest. Such species are *marker species* – their disappearance (or appearance) is an indication of environmental disturbance. The possible marker species with regards to a certain disturbance were identified by comparing the zero-component model of the training set to a zero component model of the appropriate test set. Variables with a discriminating power above 3 were identified as possible marker species. To ensure robustness, the SIMCA models compared were zero component models. The Results section contains a list of all the candidates for marker species.

Figure 18 shows the number of counts of the species *Glycera alba* for the stations without any discernible environmental disturbance (red bars), and for stations with too much mercury (blue bars). Bars shown in other colors refer to the stations with an increased concentration of another chemical (not mercury). All stations depicted in the figure are in the grain size interval $80 - 100 \mu m$. Note that this species (G. alba) is not found in any of the mercury stations, except one. Thus, the species shows good discriminating power. Furthermore, the species presence in stations with, e.g., an increased chromium concentration (green bars) indicates the *Glycera alba* as a possible marker species for mercury pollution.

Fig. 18. The number of counts for the Glyecra alba species in the $80 - 100 \mu m$ interval. Red bars represent reference stations.

4. Results

Observed NOEC values

Table 5 contains the NOEC values for the various chemicals for the different grain size intervals.

	10
Chemical 110 µm 90 µm 70 µm 50 µm 30 µm	το μπ
Ba 690 532 597 921 2010	1520
Cd 0.020 0.020 0.021 0.043 0.057	0.106
Cr 5.43 5.57 5.70 9.04 23.90	33.80
Cu 1.17 1.60 2.24 3.80 7.25	11.06
Hg 0.010 0.010 0.013 0.014 0.02	0.05
Pb 6.47 7.80 6.00 12.90 18.30	21.50
Zn 6.80 9.77 11.82 17.94 44.40	67.90
Decalins 0.058 0.036 0.032 0.084 0.021	0.026
NPD 0.011 0.014 0.035 0.037 0.061	0.093
PAH 0.009 0.032 dnp dnp 0.070	0.110
THC8.008.119.409.738.87	21.40

Table 5. Observed NOECs, ppm (dnp: data not present)

Grain sizes above 110 are included. However, we chose to collect all samples with a grain size above 100 μ m in one interval. This is *strongly* supported by the shape of the NOEC curves – they level out (become more flat) as the grain sizes increase (see below)..

Final NOEC values

Figures 19– 29 show the experimentally observed NOECs, and the fitted second order polynomial that is used to predict the final NOECs for a given chemical as a function of the grain size. Note that the match of line to the data is expressed as the R^2 value (1.0 being perfect match, close to 0 being no match). Most of the values show a good match ($R^2 > 0.9$), while the low R^2 value of the paraffinics is due to their poor stability (se later discussion). The R^2 value will also vary for the trace elements due to experimental variation in the data (as e.g. sampling, work-up procedure, instrumental analysis).

Fig. 19. Final NOEC for barium as a function of grain size.

Fig. 20. Final NOEC for chromium as a function of grain size

Fig. 21. Final NOEC for cadmium as a function of grain size

Fig. 22. Final NOEC for copper as a function of grain size

Fig. 23. Final NOEC for mercury as a function of grain size

Fig. 24. Final NOEC for zinc as a function of grain size

Fig. 25. Final NOEC for lead as a function of grain size

Fig. 26. NOEC for THC as a function of grain size

Fig. 27. Final NOEC for NPD as a function of grain size

Fig. 28. NOEC for decalins as a function of grain size

Fig. 29. Final NOEC for PAH as a function of grain size.

The second-order functions fitted to the experimentally observed NOECs are presented in Table 6. In table 6, 'x' refers to the grain size. 'y' is the final NOEC.

Function
$y = 0.1088x^2 - 25.776x + 2073.2$
$y = 0.0048x^2 - 0.8361x + 42.768$
$y = 0.00001x^2 - 0.0024x + 0.1247$
$y = 0.0013x^2 - 0.248x + 13.406$
$y = 0.000007x^2 - 0.0012x + 0.05569$
$y = 0.0089x^2 - 1.6665x + 83.811$
$y = 0.0017x^2 - 0.3666x + 26.039$
$y = 0.000007x^2 - 0.0016x + 0.1057$
$y = 0.000005x^2 - 0.0016x + 0.1204$

Table 6. Final NOECs for the chemicals as a function of the grain size. The function is valid from close to zero grain size and upto 80 μ m. For grainsize larger than 80 μ m the NOEC for grain size 80 should be used.

There seems to be a steady NOEC level until the grain size falls below a certain limit being around 100-110 μ m average grain size (see discussion below). The NOEC then increases dramatically when average grainsize decreases from roughly 100 μ m. For decalins and THC the functions are not presented. For decalins, the function is obviously of little use. For THC, the function fits the data poorly. A second-order function is therefore not suitable for THC. The problem with THC and decalines are their lack of stability toward natural weathering processes. This is illustrated in Figure 30 (below). The result is that all THC and decalin data in the MOD is probably far too low compared to the concentration when the effect was caused on the benthic fauna.

Discussion of problem with weathering of toxic stressors and the MOD

The organics are more or less rapidly weathered at the seafloor. Within some days as much as 90% of the THC may be weathered (e.g. Grahl-Nielsen and Brakstad, 1986). We refer to Figure 1 for the description of the problem that this generate into the validation part of the ERMS project.

Figure 30 Illustrating the problem of relating an easily weathered parameters as THC and decaline to an observed effect in benthic fauna.

As illustrated in Figure 1 the initial concentration of toxic stressors will soon after the release be influence by various process of weathering. The result is that they disappear with time. The degree of disappearance will be dependent of type of toxic stressor. The effect on the benthic fauna will however not appear before after some time (1-2 months depending on degree of exposition). As an example, decalin may have a a relatively high concentration at the time of release (t_0), and thus initiate a change in the benthic community. However, the response in the benthic fauna (as evident from change in population) may not appear before after some time , e.g. as shown in Figure at t_0 . In Figure 1 a small change in the benthic fauna is first evident after some time after the actual release (t_2). However, at sampling time, which at sampling a frequency every third year may be up to three year later, only a fraction of the decaline will be present while the benthic community still haven't recovered. This fraction is the data that are collected in the MOD. The consequence is that for all organics the specific data column in MOD may be too low as compared to the actual toxic level (as. Eg NOEC or fPNEC). Both methods have their clear limitation as they tend to correlate the concentration level of a specific organic compound (decalins) or group or organic compounds (THC, NPD and PAH) *at sampling time to a certain level at exposure time*.

Discussion of the observed correlation between NOECs and grain size

The observation that the NOEC-value generally is inversely proportional with grain size, is probably related to the fact that a coarse sediment will increase the bioavailability of a metal. The proportion of free metal ions, which for most metals is the most bioavailable and toxic form, is generally inversely proportional with the amount of organic matter [13]. Thus coarse sediments, which naturally contain little organic matter, will increase the bioavailability of metals. Several studies have showed a direct relationship between metal concentration in the pore water and sediment toxicity (e.g.[14-16]). It has also been shown that both macrobenthos [17,18] and meiofauna [19, 20] have been less affected by metal contamination in mud than in sand.

Species with discriminating power

In tables 7 - 16, the species with discriminating power above 3.0 is presented for each chemical in each grain size interval. The species are listed in decreasing order with regards to their discriminating ability. In some cases, a discriminating power of 2.0 is used as criterion. Discriminating power of 2.0 was used in the following cases: THC: 80-100, 60-80, 40-60. PAH: 0-20, 20-40. Cd: 40-60. Cr 20-40. At these stations there were relatively few species with discrimination power > 3.0. Thus reducing the criteria to discrimination power from 3.0 to 2.0, we got more species and thus a more robust set of markers. This is indicated by an asterisk (*) for the cases where this applies.

Mercury, 0 – 20 µm	Lead, 0 – 20 µm	Copper, 0 – 20 μm	PAH, 0 – 20 μm
Euchone sp	Ampharetidae spp	Clymenura borealis	Cerastoderma minimum
Myriochele oculata	Aonides paucibranchiata	Bathyarca pectunculoides	Kelliella miliaris
Dodecaceria concharum	Diastylidae spp	Onchnesoma steenstrupi	Glycera lapidum
Clymenura borealis	Oligochaeta spp	Myriochele oculata	Spiophanes kroyeri
Levinsenia gracilis	Polydora sp	Fauvelopsidae spp	Prionospio cirrifera
Golfingia spp	Eclysippe vanelli	Limopsis minuta	Eclysippe vanelli
Timoclea ovata	Chaetozone sp	Euclymene affinis	Yoldiella lucida
	Yoldiella lucida	Eriopisa elongata	Myriochele oculata
	Heteroclymene robusta	Myriochele spp	Harpinia pectinata
	Spiophanes wigleyi	Heteromastus filiformis	Ophelina norvegica
	Euchone incolor	Notomastus sp	
	Chaetozone setosa		
	Capitellidae spp		
	Scutopus ventrolineatus		
	Ophelina norvegica		

T 11 T 0		1	<i>C</i> I		IDATE J	0 20	•
Table 7. S	pecies with	u discriminating	power for Hg, 1	Pb, Cu a	ind PAH in the	0 - 20	µm interval.

Zinc, 0 – 20 μm	NPD, 0 – 20 μm	THC, 0 – 20 μm	Cadmium, 0 – 20 µm
Echinocucumis hispida	Ampharetidae spp	Tharyx killariensis	Tmetonyx cicada
Euchone incolor	Diastylidae spp	Onchnesoma squamatum	Eclysippe vanelli
Fauvelopsidae spp	Thyasira croulinensis	Apistobranchus tenuis	Cossura longocirrata
Spiophanes kroveri	Natatolana borealis	Lucinoma borealis	Tharvx killariensis

Onchnesoma squamatum	Onchnesoma squamatum	Ditrupa arietina	Neohela monstrosa
Pectinaria auricoma	Polydora sp	Notoproctus oculatus	
Myriochele oculata	Pectinaria auricoma	Chaetozone setosa	
Paradiopatra quadricuspis	Eclysippe vanelli	Lima tulagwyni	
Onchnesoma steenstrupi	Myriochele oculata	Pholoe inornata	
		Bathyarca pectunculoides	

Table 8. Species with discriminating power for Zn, NPD, THC and Cd in the 0 - 20 µm interval.

Cadmium, 20 – 40 µm	Chromium, 20 – 40 µm	Mercury, 20 – 40 μm	PAH, 20 – 40 μm
Thyasira obsoleta	Euchone sp	Tmetonyx similis	<i>Euchone</i> sp
Jasmineira caudata	Vargula norvegica	Thyasira eumyaria	Vargula norvegica
Pherusa falcata	Thyasira obsoleta	Thyasira obsoleta	Jasmineira candela
Aricidea catherinae	Branchiomma bombyx	Laetmatophilus tuberculatus	Thyasira obsoleta
Augeneria tentaculata	Macrochaeta polyonyx	Ophryotrocha sp	
Scoloplos armiger	Asychis biceps	<i>Munna</i> spp	
Onchnesoma squamatum	Limopsis minuta	Modiolula phaseolina	
Hyalinoecia tubicola			
Onchnesoma steenstrupi			

Streblosoma intestinale

Table 9. Species with	discriminating power	for Cd, Cr, I	Hg and PAH in the	20 - 40 µm interval.
-----------------------	----------------------	---------------	-------------------	----------------------

Pb, 40 – 60 μm

THC, 40 – 60 μm (*) Cd, 40 – 60 μm (*) Hg, 40 – 60 μm

Kelliella miliaris	Amythasides macroglossus	Thyasira equalis	Paradiopatra quadricuspis
Abra sp	Chone longocirrata	Onuphis sp	Myriochele oculata
Euchone rubrocincta	Astarte sp	Amythasides macroglossus	Eudorella emarginata
Leptosynapta inhaerens	Kelliella miliaris	Streblosoma intestinale	Entalina quinquangularis
Polydora sp	Levinsenia gracilis	Urothoe elegans	Thyasira ferruginea
Yoldiella tomlini	Lysianassidae spp	Chaetoderma nitidulum	Paramphinome jeffreysii
Myriochele heeri	Pista sp	Cerastoderma minimum	Prionospio cirrifera
Polycirrus medusa	Lumbriclymene sp	Harmothoe sp	Chaetozone setosa
Harmothoe sp	Dodecaceria concharum	Glycera lapidum	Tharyx sp
Paradoneis sp		Leptosynapta inhaerens	Euchone sp
		Ampharete falcata	Cerastoderma minimum
		<i>Pista</i> sp	Aricidea catherinae
		Nemertea spp	Laonice sarsi
		Aricidea roberti	Kelliella miliaris
		Polycirrus sp	Paradoneis lyra
		Amphipholis squamata	Octobranchus floriceps
		Glycinde nordmanni	Euclymene affinis
		Phyllodoce groenlandica	Amythasides macroglossus
		Capitella capitata	Yoldiella lucida
			Terebellides stroemi
			Mugga wahrbergi
			Pholoe pallida
			Lumbriclymene spp
			Phylo norvegica
			Ascidiacea spp
			Nucula tumidula

Table 10. Species with discriminating power for THC, Cd, Hg and Pb in the 40 - 60 µm interval. For THC and Cd a discrimination power criterion of 2.0 is used.

35

Mercury, 60 – 80 µm	Cadmium, 60 – 80 µm	THC, 60 – 80 μm (*)
Cerastoderma minimum	Harmothoe sp	Nothria hyperborea
Exogone sp	Ditrupa arietina	Capitella capitata
<i>Abra</i> sp	Myriochele danielsseni	Diastylis boecki
Diastylidae spp	Polydora sp	Ampelisca spinipes
Diastylis sp	Amythasides macroglossus	Polydora sp
Phoronis sp	Praxillella praetermissa	Apistobranchus sp
Streblosoma intestinale	Thyasira succisa	Myriochele fragilis
Polycirrus sp	Owenia fusiformis	Heteranomia squamula
Amythasides macroglossus	Scolelepis sp	Amphilochidae spp
<i>Parougia</i> sp	Onchnesoma steenstrupi	<i>Exogone</i> sp
Asteroidea spp		Kelliella miliaris
Notomastus latericeus		Synchelidium sp
Aricidea laubieri		Scaphopoda spp
Retusa umbilicata		Roxania utriculus
Lysianassidae spp		Aricidea sp
Thyasira flexuosa		Lumbrineris sp
Aricidea wassi		
Ampharete lindstroemi		
Ophelina modesta		
Lumbrineris gracilis		
Pholoe pallida		
Ditrupa arietina		
Synchelidium sp		
Cirratulus cirratus		

Table 11. Species with discriminating power for Hg, Cd and THC in the 60 - 80 μ m interval. For THC a discrimination power criterion of 2.0 is used.

Zinc,	60 –	80	μm	
-------	------	----	----	--

Copper, 60 – 80 µm

NPD, 60 – 80 µm

Onchnesoma steenstrupi
Octobranchus floriceps
<i>Harpinia</i> sp
Maldanidae spp
Abra longicallus
Notomastus latericeus
Chaetoderma sp
Gnathia oxyurea
Leptophoxus falcatus
Pogonophora spp
Yoldiella tomlini
<i>Dodecaceria</i> sp
<i>Aricidea</i> sp
Nematoda spp
Prionospio cirrifera
Cuspidaria rostrata
Thyasira flexuosa
Levinsenia gracilis
Euclymeninae spp
Ampelisca tenuicornis
Falcidens crossotus
Eclysippe vanelli
Thyasira croulinensis
Pulsellum lofotense
Myriochele oculata
Nicippe tumida
Scalibregma inflatum
Eugyra arenosa
Eurydice pulchra
Ditrupa arietina
Phaxas pellucidus

Myriochele danielsseni Thyasira succisa *Harpinia* sp Onchnesoma steenstrupi Octobranchus floriceps Owenia fusiformis Notomastus latericeus Myriochele fragilis Abra longicallus Scolelepis sp Chaetoderma sp Maldanidae spp Ampelisca tenuicornis Leptophoxus falcatus Aricidea sp Spiophane surceolata Gnathia oxyurea Cirratulus caudatus Lucinoma borealis Phaxas pellucidus Tharyx killariensis Yoldiella tomlini Polydora sp Cuspidaria ostrata Lumbrineris sp Pectinaria auricoma Dodecaceria sp Aricidea roberti Levinsenia gracilis Scolelepis korsuni Pholoe baltica Westwoodilla caecula Cirrophorus furcatus Amphiura filiformis Eclysippe vanelli Caudofoveata spp

Thyasira succisa *Harpinia* sp Onchnesoma steenstrupi Octobranchus floriceps Owenia fusiformis Myriochele fragilis Notomastus latericeus Chaetoderma sp Abra longicallus Maldanidae spp Yoldiella tomlini Gnathia oxyurea Cuspidaria rostrata Pogonophora spp Leptophoxus falcatus Levinsenia gracilis Parougia caeca Polycirrus norvegicus Ditrupa arietina

Table 12. Species with discriminating power for Zn, Cu and NPD in the 60 - 80 µm interval.

Myriochele oculata

Hg, 80 – 100 µm	Cr, 80 – 100 μm	Zn, 80 – 100 μm	THC, 80 – 100µm m (*)
Corymorpha nutans	Pholoe inornata	Nephtys cirrosa	Abyssoninoe hibernica
Caudofoveata spp	Harmothoe sp	Onchnesoma steenstrupi	Jasmineira candela
Echinus sp	Pectinaria koreni	Jasmineira sp	Falcidens crossotus
Chone duneri	Eugyra arenosa	Apistobranchus tullbergi	Diastylis boecki
Ditrupa arietina	Chaetozone setosa	Abyssoninoe hibernica	Byblis gaimardi
Cnidaria spp	Nematoda spp	Pectinaria koreni	Harpinia pectinata
Clymenura borealis	Tmetonyx cicada	Jasmineira candela	Praxillella sp
Glycera tridactyla	Ophiura affinis	Arcopagia balaustina	Nothria conchylega
Falcidens crossotus	Heteranomia squamula	Caudofoveata spp	Lumbriclymeninae spp
Diastylis cornuta	Nephtys cirrosa	Byblis gaimardi	Pectinaria sp
Diastylis goodsiri		Ampelisca gibba	Prionospio dubia
Thyasira succisa		Harmothoe glabra	Cochlodesma praetenue
Euclymene sp		Lumbriclymeninae spp	Goniada norvegica
Ampelisca gibba		Falcidens crossotus	Euclymene droebachiensis
Ampharete falcata		Nephtys hystricis	Thyasira pygmaea
Euchone southerni			Terebellides stroemi
Heteranomia squamula			Abra nitida
Tharyx killariensis			Isaeidae spp
Cirratulus caudatus			Aphelochaeta sp
			Jasmineira sp
			Ampelisca gibba

Table 13. Species with discriminating power for Hg, Cr, Zn and THC in the 80 - 100 µm interval. For THC a discrimination power criterion of 2.0 is used.

Decalins, 80 – 100 µm	Lead, 80 – 100 µm	Copper, 80 – 100 µm	Cadmium, 80 – 100 μm
Ditrupa arietina	Myriochele fragilis	Abyssoninoe hibernica	Abyssoninoe hibernica
Natatolana borealis	Owenia fusiformis	Jasmineira candela	Onchnesoma steenstrupi
Exogone hebes	Ophiura affinis	Ampelisca gibba	Apistobranchus tullbergi
Nephtys cirrosa	Ampharete sp	Falcidens crossotus	Ampelisca gibba
Prionospio dubia	Ampharete finmarch	icaNephtys hystricis	Jasmineira candela
	Pectinaria koreni	Byblis gaimardi	Chone collaris
	Thyasira flexuosa	Nothria conchylega	Scolelepis tridentata
	Trichobranchus rose	usDiastylis boecki	Natatolana borealis
	Aphrodita aculeata	Pholoe inornata	Ditrupa arietina
	Paramphinome jeffre	eysiApistobranchus sp	Nephtys hystricis
	Harmothoe sp	Thyasira pygmaea	Falcidens crossotus
	Levinsenia gracilis	Jasmineira sp	Octobranchus floriceps
		<i>Praxillella</i> sp	Byblis gaimardi
		Lumbriclymeninae spp	Sosanopsis wireni
		Exogone sp	Praxillella sp
		Abra nitida	Pseudopolydora paucibranchiata
		Terebellides stroemi	Cuspidaria costellata
		Euchone sp	Thyasira succisa
		Orbinia armandi	Goniada norvegica
		Brissopsis lyrifera	Lumbriclymeninae spp
		Ostracoda spp	Terebellides stroemi
		Lumbrineris sp	Thyasira pygmaea
		Samytha sexcirrata	Orbinia armandi
		Paramphinome jeffreysii	Cylichna alba
		Rhodine loveni	Leptophoxus falcatus
		Pectinaria koreni	Rhodine loveni
		Goniada norvegica	Synelmis klatti
		Eclysippe vanelli	Euchone sp
		Laonice sarsi	Abra nitida
		Caudofoveata spp	Hydroides norvegica
		Pseudopolydora paucibra	nch iate nice sarsi
			Nothria conchylega
			Apistobranchus sp
			Pectinaria koreni

Table 14. Species with discriminating power for decalins, Pb, Cu and Cd in the 80 - 100 µm interval.

Cadmium, >100 μm	Chromium, >100 µm	Mercury, >100 μm	Zinc, >100 μm
Spiophanes sp	Corymorpha nutans	Spiophanes sp	Protodorvillea kefersteini
Limatula subauriculata	Pisione remota	Clymenura sp	Limatula subauriculata
Protodorvillea kefersteini	Nothria conchylega	Diastyloides biplicata	Spiophanes sp
Thracia phaseolina	Spio mecznikowianus	Chone duneri	Bathyporeia sp
Ditrupa arietina	Gammaropsis sp	Cirrophorus furcatus	Samytha sexcirrata
Poecilochaetus sp		<i>Spio</i> sp	Harmothoe fragilis
Anobothrus gracilis		Limatula subauriculata	Spiophanes wigleyi
Prionospio fallax		Tharyx killariensis	Aricidea suecica
Travisia forbesii		Chone sp	Cirrophorus furcatus
Pseudopolydora paucibranchiata		Capitellidae spp	Yoldiella tomlini
Capitellidae spp		Protodorvillea kefersteini	Paraphoxus oculatus
Lysianassidae spp			Gnathia oxyurea
Chone sp			Opisthodonta pterochaeta
Thyasira croulinensis			Phoronis sp
Opisthodonta pterochaeta			<i>Philine</i> sp
Spiophanes wigleyi			Thyasira croulinensis
Amphiura filiformis			Ampelisca tenuicornis
<i>Clymenura</i> sp			Lumbrineris gracilis
Edwardsia sp			Pholoe synopthalmica
Yoldiella tomlini			Eteone flava
Synchelidium sp			Ampelisca typica
Notomastus sp			
Euchone southerni			
Gari fervensis			
Astarte sulcata			
Mysella bidentata			

Table 15. Species with discriminating power for Cd, Cr, Hg and Zn when grain size is above 100 μ m.

40

THC, >100 μm	Decalins, >100 μm (*)	Lead, >100 μm (*)
Nemertea spp	Myriochele danielsseni	Owenia fusiformis
Aricidea cerrutii	Ericthonius spp	Lanice conchilega
Cirratulus caudatus	Aonides paucibranchiata	Notomastus latericeus
Chaetozone sp	Timoclea ovata	Antalis sp
Labidoplax digitata	Spio mecznikowianus	Spiophanes urceolata
Ampharetidae spp	Bathyporeia sp	Sthenelais limicola
Spiophanes bombyx	Polycirrus sp	Myriochele danielsseni
Owenia fusiformis	Phisidia aurea	Glycera lapidum
<i>Edwardsia</i> sp	Atylus vedlomensis	Lysianassidae spp
Harmothoe antilopes	Gnathia oxyurea	Chone sp
Labidoplax buskii	Themisto compressa	Cerianthus lloydii
Unciola planipes	Chone duneri	Timoclea ovata
Goniada maculata	Lumbrineris gracilis	Ophelia borealis
Glycera alba	Eumida ockelmanni	Aricidea wassi
Myriochele oculata	Tridonta montagui	Mysella spp
	Nemertea spp	Spiophanes kroyeri
	Abra sp	Spiophanes bombyx
		Nematoda spp
		Ophryotrocha sp
		Aricidea simonae
		Amphiura filiformis
		Exogone verugera
		Philine sp

Table 16. Species with discriminating power for THC, decalins and Pb when the grain size is above 100 µm. For decalins and Pb a discrimination power criterion of 2.0 is used.

1

5. Comparison of field NOECs and PNECs from literature

	(MPA,)	coeff. (Log K _d)*	coeff. (Ky)*	(MPA _{sectionent})	canc. (Cb) **	(MPC _{andmant})
	µg/I	L/kg	L/kg	mg/1	mg/1	mg/l
Cadmium	0,34	1,46	29	0,01	0,04	0,05
Mercury (methyl)	0,01	5,77	588844	5,89	0,01	5,9
Lead	11	1,9	79	0,87	17	17,87
Zinc	6,6	1,84	69	0,46	50	50,46
Chromium	8,5	3,24	1738	14,77	28	42,77
Copper	1,1	1,64	44	0,05	9	9,05

Equilibrium Partitioning Method (EqP) - metals

Table 17 PNEC estimated from EqP methods.. This is literature data included assessment factors dependent of the literature data available Table from Statoil

	Interval 1 < 63 µm ("mud - silt")	Interval 63 >< 94µm ("mud – fine sand")	Interval 3 ("fine sand – sand")> 94 µm
Substances	F-PNECx (mg/kg)	F-PNECx (mg/kg)	<i>F-PNECx</i> (<i>mg/kg</i>)
Ba	2200	1931	1942
Cd	0.042	0.031	0.050
Cr	7.400	9.116	4.836
Cu	6.587	4.877	4.167
Hg	0.026	0.937	-
Pb	16.15	11.68	10.60
Zn	29.43	25.07	23.93
THC	41.95	99.62	72.82
NPD	0.231	0.144	0.343
PAH	0.146	-	0.134
PAH*1	0.196	0.108	0.097
Decalins	8.336	16.98	12.33

Table 18 Field derived PNECs from the SSD approach. Table from University of Oslo

Table 17 and table 18 shows predicted toxic levels of stressors, so-called Predicted No Effect Concentrations (PNECs). Table 17 is derived from literature including assessment factors and table18 is the ones derived from data analysis of MOD (field PNECs derived by the SSD approach of UiO), respectively.

Comparing to the NOEC values from the Mowing Windows Modelling method (MWM method, see Table 5) may lead to the following conclusion:

- 1) There is an overall fair agreement between the literature values and the field validation methods SSD and MWM (within an order of magnitude). There is however a significant discrepancy between the Mercury and Chromium values reported from literature and the ones that are observed in field data.
- 2) The MWM approach has succeeded in delivering "pure" field NOEC values for specific schemical stressors, i.e. without any interference from other chemical stressors.

Until this pioneer work, there has not been reported any work in the literature who has been able to solve the problem of covariance among toxic stressors.

- 3) The observed correlation between NOEC and grain size (Mowing Window Approach) has not been previously reported in literature, probably because (until now) there has been lack of data and methodology to cope with correlations among toxic stressors present at same time and place.
- 4) The observed correlation between NOEC and grain size (Moving window approach) has not been reproduced by the SSD approach, probably due to interference from correlation between chemical stressors.

The results from the validation reports (MWM and SSD) will be discussed in a separate memo (Bjorgesæter, A. and Brakstad, F., 2005)

6 Definitions

NOEC; "No Observed Effect Concentration" of a chemical toxic stressor, i.e. the highest <u>observed</u> level of a toxic stressor that may be present without causing any observable effect on the organism under examination.

Field NOEC; **NOEC** applied to field data extracted from the MOD. Effect is the measured as change in the population of the benthic fauna. The more observations, the closer will the field NOEC be to the **true NOEC** value.

True NOEC; a theoretical value indicating the highest possible level of NOEC that may be found for a certain toxic stressor when a infinitely number of observation has been investigated. In practise the true NOEC value will never been found in field situation, as the toxic stressors are present as discrete numbers with a certain precision.

7. References

- 1. ERMS Task 5 Validation part 1, F.Brakstad and Hilde C. Trannum, MUST report RTD04_04 (2005)
- 2. Wold S., Albano C., Dunn W., Edlund U, Esbensen K, Geladi P, Hellberg S, Johansson E, Lindberg W, Sjöström M (1984): Multivariate data analysis in chemistry, in Kowalski B R (Ed.) *Chemometrics: Mathematics and Statistics in Chemistry*, Dordrecht, D. Reidel
- 3. Joliffe J. (1986): Principal Component Analysis, Springer, Berlin
- 4. Wold S., Esbensen K., Geladi P. (1987): Principal Component Analysis, *Chemometrics and Intelligent Laboratory Systems*, **2**, 37-52
- 5. Martens H., Næs T. (1989): *Multivariate Calibration*, John Wiley & Sons Ltd., Chichester
- 6. Mardia K.V., Kent J.T., Bibby J.M. (1992): *Multivariate Analysis*, Academic Press Inc., San Diego
- 7. Wold S. (1976) Pattern Recognition by means of disjoint principal components models, *pattern Recognition*, **8**, 127-139
- 8. Albano C., Dunn W., Edlund E., Johansson E, Nordén B, Sjöström M., Wold S. (1978): Four levels of pattern recognition, *Analytica Chimica Acta*, **103**, 429-443
- 9. Kvalheim O.M., Øygard K., Grahl-Nielsen O. (1983): SIMCA multivariate data analysis of blue mussel components in environmental pollution studies, *Analytica Chimica Acta*, **150**, 145-152
- 10. Gabriel K.R. (1971): The biplots graphic display of matrices with application to principal component analysis, *Biometrika*, **58**, 953-967
- 11. Stone M. (1974): Cross-validatory choice and assessment of statistical predictions, *Journal of the Royal Statistic Society*, *B*, **36**, 111-133
- 12. Wold S. (1978): Cross-validatory estimation of the number of components in factor and principal component models, *Technometrics*, **20**, 397-405
- 13. Bryan, G.W., Langston, W.J., 1992. Bioavailability, accumulation and effects of heavy metals in sediments with a special reference to United Kingdom estuaries: a review. Environ. Pollut. 76, 89–131.
- Swartz, R.C., Ditsworth, G.R., Scults, D.W., Lamberson, J.O., 1985. Sediment toxicity to a marine infaunal amphipod: cadmium and its relation with sewage sludge. Mar. Environ. Res. 18, 133–153.
- 15. Kemp, P.F., Swartz, R.C., 1988. Acute toxicity of interstitial and particle-bound cadmium to a marine infaunal copepod. Mar. Environ. Res. 26, 135–153.

- Green, A.S., Chandler, G.T., Blood, E.R., 1993. Aqueous-, porewater-, and sedimentphase cadmium: toxicity relationships for a meiobenthic copepod. Environ. Toxicol. Chem. 12, 1497–1506
- 17. Pesch, C.E., 1979. Influence of three sediment types on copper toxicity to the polychaete Neanthes arenaceodentata. Mar. Biol. 52, 237–245.
- Trannum, H.C., Olsgard, F., Skei, J.M., Indrehus, J., Øverås, S., Eriksen, J., 2004. Effects of copper, cadmium and contaminated harbour sediments on recolonisation of soft-bottom communities. Journal of Experimental Marine Biology and Ecology 310 (2004) 87–114.
- Tietjen, J.H., 1980. Population structure and species distribution of free-living nematodes inhabiting sands of the New York Bight Apex. Estuar. Coast. Mar. Sci. 10, 61–73.
- Austen, M.C., McEvoy, A.J., Warwick, R.M., 1994. The specificity of meiobenthic community responses to different contaminants: results from microcosm experiments. Mar. Pollut. Bull. 28, 557–563

8. Appendix 1 Validation of sensitive species according to the Moving Window Model.

In this appendix, a report written by Akvaplan-NIVA (Report APN-411.3191) on the marker species is included.

Rapporttittel /Report title

ERMS – Validation of sensitive species according to the Moving Window Model.

Forfatter(e) / Author(s)	Akvaplan-niva rapport nr / report no:
Sten-Richard Birkely	APN-411.3191
	Dato / Date:
	21/06/05
	Antall sider / No. of pages
	17 + 0
	Distribusjon / Distribution
	Begrenset/Restricted
Oppdragsgiver / Client	Oppdragsg. ref. / Client ref.
MUST	Frode Brakstad

Sammendrag / Summary

Species which show sensitivity, either by decreasing or increasing abundance, towards specific chemical stressors and at specific grain size intervals are identified through a multivariate statistical model (Moving Window Modelling, MWM). This report seeks a validation of the species identified as sensitive in terms of taxonomy. Distribution of taxa (or lowest possible taxa) both within specific grain size intervals and within grain size intervals at specific chemical stressors are tabulated.

Emneord:	Key words:
	ERMS
	Moving Window Modelling
	Grain size intervals
	Chemical stressors
	Sensitive species

Prosjektleder / Project manager

Kvalitetskontroll / Quality control

Sten-Richard Birkely

Salve Dahle

© 2006 Akvaplan-niva

ISBN 00-00-00000-0

Table of Content

1.	Introduction		- 3 -
2.	Material and	1 methods	- 3 -
3.	Results and	discussion	3 -
4.	References		9 -
5.	Appendix	- 1	10 -

1. Introduction

During this part of the ERMS-project (Environmental Risk Management System) a need for PNEC-values without correlation effect from all the toxic stressors (i.e chemicals) became visible. In this context it is later referred to as "pure field NOEC". The aims of this subproject were to recognize organisms which displayed sensitivity to chemical changes in their habitats and at what level this occurs. In this present study a taxonomic validation of the sensitive species found is prepared.

2. Material and methods

Sensitivity of organisms is explored using a statistical multivariate model developed by Brakstad and Grung (*in prep.*). The model has built-in criteria for sensitivity of organisms to single chemical stressors and grain size intervals. Within here, the abundance of taxa present at various grain size intervals are investigated in order to find their possibility of being affected, positively or negatively, in presence of various toxic stressors (i.e. chemical substances). The model is constructed so that the effect of only one single chemical stressor is evaluated successively and is repeated for every grain size interval (0-20, 20-40, 40-60, 60-80, 80-100 and >100 μ m).

A total of 276 taxa were recorded as sensitive to an alteration in chemical status of their habitat.

3. Results and discussion

The distribution of taxa within the main taxonomic groups is given in Table 1 (partitioning into grain size intervals are here disregarded) and displays that a total of 276 taxa are found to be sensitive in presence of an alteration of chemical composition in their environment. The polychaetes comprise the most sensitive taxa and their potential to be affected are more than three times that of the molluscs and crustaceans. When exploring the taxonomic groups with the grain size intervals into account, the picture is approximately the same: there are highest proportions of polychaetes showing sensitivity to chemical stressors (Table 2). Alternative explanation for these findings could be that the polychaetes as a taxonomic group are well known to be present in high abundance and diversity at soft bottom habitats (Mannsvik et al. 2001).

Main taxonomic groups		Таха	
	Number	in %	
Polychaeta	163	59	
Mollusca	48	17	
Crustacea	42	15	
Echinodermata	10	4	
Div. groups	13	5	
Total	276	100	

Table 1. Distribution of taxa within the main taxonomic groups.

Grain size interval				Т	axa			
0-20µm	No	in %	20-40µm	No	in %	40-60µm	No	in %
Annelida			Annelida			Annelida		
Cnidaria			Cnidaria			Cnidaria		
Coelenterata			Coelenterata			Coelenterata		
Crustacea	6	11	Crustacea	3	13	Crustacea	3	5
Echinodermata	1	2	Echinodermata			Echinodermata	2	4
Mollusca	10	19	Mollusca	4	17	Mollusca	12	21
Nematoda			Nematoda			Nematoda		
Nemertea			Nemertea			Nemertea	1	2
Oligochaeta	1	2	Oligochaeta			Oligochaeta		
Polychaeta	32	60	Polychaeta	14	61	Polychaeta	37	66
Sipuncula	3	6	Sipuncula	2	9	Sipuncula		
Tunicata			Tunicata			Tunicata	1	2
Total	53	100	Total	23	100	Total	56	100
60-80µm			80-100µm			>100µm		
Annelida	1	1	Annelida			Annelida		
Cnidaria			Cnidaria	1	1	Cnidaria		
Coelenterata			Coelenterata	1	1	Coelenterata	3	3
Crustacea	14	16	Crustacea	9	11	Crustacea	13	14
Echinodermata	2	2	Echinodermata	3	4	Echinodermata	3	3
Mollusca	18	21	Mollusca	12	14	Mollusca	13	14
Nematoda	1	1	Nematoda			Nematoda	1	1
Nemertea			Nemertea	1	1	Nemertea	1	1
Oligochaeta			Oligochaeta			Oligochaeta		
Polychaeta	46	54	Polychaeta	55	65	Polychaeta	56	62
Sipuncula	2	2	Sipuncula	1	1	Sipuncula		
Tunicata	1	1	Tunicata	1	1	Tunicata		
Total	85	100	Total	84	100	Total	90	100

Table 2. Distribution of taxa (in number and %) at specific grain size intervals (in μ m).

If the ten most (or up to ten, in cases where the amount of sensitive taxa was lower) sensitive taxa are compared, and the data was pre-treated with partitioning both in grain size intervals and separated chemical stressors, the noteworthy feature was that hardly any taxa did occur at several grain size intervals (Table 3). Exceptions here were the sipunculid *Onchnesoma steenstrupi*, the polychaetes *Amythasides macroglossus*, *Chone duneri*, *Ditrupa arientina*, *Polydora* sp., *Streblosomea intestinale*, the mollusc *Cerastoderma minimum* and the crustacean *Gnathia oxyurea*. Hovever, when all the taxa showing sensitivity towards specific chemical stressors at specific grain size intervals were included, a variety of taxa occurred in more than one grain size interval (Appendix 1).

Table 3. Distribution of (up to) the ten most sensitive taxa at specific grain size intervals (gr.size, in μ m) and specific chemical stressor. Abbreviations: Ann: annelids, Cni: cnidarians, Coel: coelenterate, Cru: crustaceans, Ech: echinoderms, Moll: molluscs, Nem: Nematoda, Nmt: nemerteans, Olig: oligochaets Pol: polychaets, Sip: sipunculids, Tun: tunicata.

taxon.gr			onennear		
	Cu		Cd		Cr
0-20	Таха	0-20	Таха	20-40	Таха
Pol	Clymenura borealis	Cru	Tmetonyx cicada	Pol	Euchone sp
Moll	Bathyarca pectunculoides	Pol	Eclysippe vanelli	Cru	Vargula norvegica
Sip	Onchnesoma steenstrupi	Pol	Cossura longocirrata	Moll	Thyasira obsoleta
Pol	Myriochele oculata	Pol	Tharyx killariensis	Pol	Branchiomma bombyx
Pol	Fauvelopsidae spp	Cru	Neohela monstrosa	Pol	Macrochaeta polyonyx
Moll	Limopsis minuta	20-40		Pol	Asychis biceps
Pol	Euclymene affinis	Moll	Thyasira obsoleta	Moll	Limopsis minuta
Cru	Eriopisa elongata	Pol	Jasmineira caudata	80-100	
Pol	Myriochele spp	Pol	Pherusa falcata	Pol	Pholoe inornata
Pol	Heteromastus filiformis	Pol	Aricidea catherinae	Pol	Harmothoe sp
60-80		Pol	Augeneria tentaculata	Pol	Pectinaria koreni
Pol	Myriochele danielsseni	Pol	Scoloplos armiger	Tun	Eugyra arenosa
Moll	Thyasira succisa	Sip	Onchnesoma squamatum	Pol	Chaetozone setosa
Cru	<i>Harpinia</i> sp	Pol	Hyalinoecia tubicola	Nem	Nem spp
Sip	Onchnesoma steenstrupi	Sip	Onchnesoma steenstrupi	Cru	Tmetonyx cicada
Pol	Octobranchus floriceps	Pol	Streblosoma intestinale	Ech	Ophiura affinis
Pol	Owenia fusiformis	40-60		Pol	Heteranomia squamula
Pol	Notomastus latericeus	Pol	Amythasides macroglossus	Pol	Nephtys cirrosa
Pol	Myriochele fragilis	Pol	Chone longocirrata	>100	
Moll	Abra longicallus	Pol	Dodecaceria concharum	Coel	Corymorpha nutans
Pol	Scolelepis sp	Pol	Levinsenia gracilis	Cru	Gammaropsis sp
80-100		Pol	Lumbriclymene sp	Pol	Nothria conchylega
Pol	Abyssoninoe hibernica	Pol	<i>Pista</i> sp	Pol	Pisione remota
Pol	Jasmineira candela	Moll	Astarte sp	Pol	Spio mecznikowianus
Cru	Ampelisca gibba	Moll	Kelliella miliaris		
Moll	Falcidens crossotus	Cru	Lysianassidae spp		
Pol	Nephtys hystricis	60-80			
Cru	Byblis gaimardi	Pol	Harmothoe sp		
Pol	Nothria conchylega	Pol	Ditrupa arietina		
Cru	Diastylis boecki	Pol	Myriochele danielsseni		
Pol	Pholoe inornata	Pol	Polydora sp		
Pol	Apistobranchus sp	Pol	Amythasides macroglossus		
		Pol	Praxillella praetermissa		
		Moll	Thyasira succisa		
		Pol	Owenia fusiformis		
		Pol	Scolelepis sp		
		Sip	Onchnesoma steenstrupi		
		80-100			
		Pol	Abyssoninoe hibernica		
		Sip	Onchnesoma steenstrupi		
		Pol	Apistobranchus tullbergi		
		Cru	Ampelisca gibba		
		Pol	Jasmineira candela		
		Pol	Chone collaris		
		Pol	Scolelepis tridentata		
		Cru	Natatolana borealis		

Pol	Ditrupa arietina
Pol	Nephtys hystricis
>100	
Pol	Spiophanes sp
Moll	Limatula subauriculata
Pol	Protodorvillea kefersteini
Moll	Thracia phaseolina
Pol	Ditrupa arietina
Pol	Poecilochaetus sp
Pol	Anobothrus gracilis
Pol	Prionospio fallax
Pol	Travisia forbesii
Pol	Pseudopolydora paucibranchiata

Hg

0-20 Pol

Pol

Pol

Pol

Pol

Sip

Moll

Moll

Moll Cru

Pol

Cru

Moll 40-60 Moll

Pol

Pol

Pol

Cru

Moll Moll

Pol

Pol

Ech

Pol

Moll

Cru

Cru

Pol

Pol

Pol

Pol

Pol

80-100

60-80 Moll

20-40 Pol

Pb

Hg		Pb		Zn
Таха	0-20	Таха	0-20	Таха
Euchone sp	Pol	Ampharetidae spp	Ech	Echinocucumis hispida
Myriochele oculata	Pol	Aonides paucibranchiata	Pol	Euchone incolor
Dodecaceria concharum	Cru	Diastylidae spp	Pol	Fauvelopsidae spp
Clymenura borealis	Olig	Oligochaeta spp	Pol	Spiophanes kroyeri
Levinsenia gracilis	Pol	Polydora sp	Sip	Onchnesoma squamatum
Golfingia spp	Pol	Eclysippe vanelli	Pol	Pectinaria auricoma
Timoclea ovata	Pol	Chaetozone sp	Pol	Myriochele oculata
	Moll	Yoldiella lucida	Pol	Paradiopatra quadricuspis
Tmetonyx similis	Pol	Heteroclymene robusta	Sip	Onchnesoma steenstrupi
Thyasira eumyaria	Pol	Spiophanes wigleyi	60-80	
Thyasira obsoleta	40-60		Sip	Onchnesoma steenstrupi
Laetmatophilus tuberculatus	Pol	Paradiopatra quadricuspis	Pol	Octobranchus floriceps
Ophryotrocha sp	Pol	Myriochele oculata	Cru	Harpinia sp
<i>Munna</i> spp	Cru	Eudorella emarginata	Pol	Maldanidae spp
Modiolula phaseolina	Moll	Entalina quinquangularis	Moll	Abra longicallus
	Moll	Thyasira ferruginea	Pol	Notomastus latericeus
Thyasira equalis	Pol	Paramphinome jeffreysii	Moll	Chaetoderma sp
<i>Onuphis</i> sp	Pol	Prionospio cirrifera	Cru	Gnathia oxyurea
Amythasides macroglossus	Moll	Chaetozone setosa	Cru	Leptophoxus falcatus
Streblosoma intestinale	Pol	Tharyx sp	Ann	Pogonophora spp
Urothoe elegans	Pol	Euchone sp	80-100	
Chaetoderma nitidulum	80-100		Pol	Nephtys cirrosa
Cerastoderma minimum	Pol	Myriochele fragilis	Sip	Onchnesoma steenstrupi
Harmothoe sp	Pol	Owenia fusiformis	Pol	Jasmineira sp
Glycera lapidum	Ech	Ophiura affinis	Pol	Apistobranchus tullbergi
Leptosynapta inhaerens	Pol	Ampharete sp	Pol	Abyssoninoe hibernica
	Pol	Ampharete finmarchica	Pol	Pectinaria koreni
Cerastoderma minimum	Pol	Pectinaria koreni	Pol	Jasmineira candela
Exogone sp	Moll	Thyasira flexuosa	Moll	Arcopagia balaustina
Abra sp	Pol	Trichobranchus roseus	Moll	Caudofoveata spp
Diastylidae spp	Pol	Aphrodita aculeata	Cru	Byblis gaimardi
<i>Diastylis</i> sp	Pol	Paramphinome jeffreysii	>100	
Phoronis sp	>100		Cru	Ampelisca tenuicornis
Streblosoma intestinale	Ech	Amphiura filiformis	Cru	Ampelisca typica
Polycirrus sp	Moll	Antalis sp	Pol	Aricidea suecica
Amythasides macroglossus	Pol	Aricidea simonae	Cru	Bathyporeia sp
<i>Parougia</i> sp	Pol	Aricidea wassi	Pol	Cirrophorus furcatus
	Coel	Cerianthus lloydii	Pol	Eteone flava

Coel	Corymorpha nutans	Pol	Chone sp	Cru	Gnathia oxyurea
Moll	Caudofoveata spp	Pol	Exogone verugera	Pol	Harmothoe fragilis
Ech	Echinus sp	Pol	Glycera lapidum	Moll	Limatula subauriculata
Pol	Chone duneri	Pol	Lanice conchilega	Pol	Lumbrineris gracilis
Pol	Ditrupa arietina	Cru	Lysianassidae spp		
Cni	Cnidaria spp				

Decalins

Spio sp

Clymenura borealis

Falcidens crossotus Diastylis cornuta

Glycera tridactyla

Capitellidae spp

Cirrophorus furcatus

Diastyloides biplicata

Limatula subauriculata

Protodorvillea kefersteini

Chone duneri

Clymenura sp

Spiophanes sp

Chone sp

Pol

Pol

Moll

Moll >100 Pol

Pol

Pol

Pol

Pol

Cru

Moll

Pol

Pol

Pol

80-100	Таха
Pol	Ditrupa arietina
Cru	Natatolana borealis
Pol	Exogone hebes
Pol	Nephtys cirrosa
Pol	Prionospio dubia
>100	
Pol	Myriochele danielsseni
Cru	Ericthonius spp
Pol	Aonides paucibranchiata
Moll	Timoclea ovata
Pol	Spio mecznikowianus
Cru	Bathyporeia sp
Pol	Polycirrus sp
Pol	Phisidia aurea
Cru	Atylus vedlomensis
Cru	Gnathia oxyurea

NPD

0-20	Таха
Pol	Ampharetidae spp
Cru	Diastylidae spp
Moll	Thyasira croulinensis
Cru	Natatolana borealis
Sip	Onchnesoma squamatum
Pol	Polydora sp
Pol	Pectinaria auricoma
Pol	Eclysippe vanelli
Pol	Myriochele oculata
60-80	
Moll	Thyasira succisa
Cru	<i>Harpinia</i> sp
Sip	Onchnesoma steenstrupi
Pol	Octobranchus floriceps
Pol	Owenia fusiformis
Pol	Myriochele fragilis
Pol	Notomastus latericeus
Moll	Chaetoderma sp
Moll	Abra longicallus
Pol	Maldanidae spp

	THC
0-20	Таха
Pol	Tharyx killariensis
Sip	Onchnesoma squamatum
Pol	Apistobranchus tenuis
Moll	Lucinoma borealis
Pol	Ditrupa arietina
Pol	Notoproctus oculatus
Pol	Chaetozone setosa
Moll	Lima tulagwyni
Pol	Pholoe inornata
Moll	Bathyarca pectunculoides
40-06	
Moll	Kelliella miliaris
Moll	Abra sp
Pol	Euchone rubrocincta
Ech	Leptosynapta inhaerens
Pol	Polydora sp
Moll	Yoldiella tomlini
Pol	Myriochele heeri
Pol	Polycirrus medusa
Pol	Harmothoe sp_
Pol	Paradoneis sp
60-80	
Pol	Nothria hyperborea
Pol	Capitella capitata
Cru	Diastylis boecki
Cru	Ampelisca spinipes
Pol	Polydora sp
Pol	Apistobranchus sp
Pol	Myriochele fragilis
Pol	Heteranomia squamula

Cru	Amphilochidae spp
Pol	Exogone sp
80-100	
Pol	Abyssoninoe hibernica
Pol	Jasmineira candela
Moll	Falcidens crossotus
Cru	Diastylis boecki
Cru	Byblis gaimardi
Cru	Harpinia pectinata
Pol	Praxillella sp
Pol	Nothria conchylega
Pol	Lumbriclymeninae spp
Pol	Pectinaria sp
>100	
Pol	Ampharetidae spp
Pol	Aricidea cerrutii
Pol	Chaetozone sp
Pol	Cirratulus caudatus
Coel	<i>Edwardsia</i> sp
Pol	Glycera alba
Pol	Goniada maculata
Pol	Harmothoe antilopes
Ech	Labidoplax buskii
Ech	Labidoplax digitata

PAH

0-20	Таха
Moll	Cerastoderma minimum
Moll	Kelliella miliaris
Pol	Glycera lapidum
Pol	Spiophanes kroyeri
Pol	Prionospio cirrifera
Pol	Eclysippe vanelli
Moll	Yoldiella lucida
Pol	Myriochele oculata
Cru	Harpinia pectinata
Pol	Ophelina norvegica
20-40	
Pol	Euchone sp
Cru	Vargula norvegica
Pol	Jasmineira candela
Moll	Thyasira obsoleta

Close investigations of the sensitivity in specific species when exposed to "pure" chemical stressors have, to our knowledge, not been performed earlier. Using our method the correlation effect from having more than one chemical stressor present is removed, when analysing species abundance data. Additionally, the model support data partitioned into specific grain size intervals. Ultimately, information about specific taxa/species at selected grain size intervals displaying sensitivity when exposed to specific taxa/species preferences towards grain size in their habitat can be pointed out.

4. References

Mannsvik, H-P, A. Pettersen, V. Lyngmo, F. Mikkola, K.L. Gabrielsen, 2001. Environmental monitoring survey of oil and gas fields in Region II, 2000. APN-report 411.1890.

5. Appendix

Appendix 1. Distribution of the most sensitive taxa at specific grain size intervals (gr.size in μ m) and specific chemical stressor. Abbreviations: see Table 3.

gr.size/ taxonomic			gr.size/ taxonomic		
group	Chemical		group	Chemical	
	Cu			Cd	
0-20	Таха	Discr. Power	0-20	Таха	Discr. Power
Pol	Clymenura borealis	5,003268	Cru	Tmetonyx cicada	4,945538
Moll	Bathyarca pectunculoides	4,612311	Pol	Eclysippe vanelli	4,093302
Sip	Onchnesoma steenstrupi	4,278846	Pol	Cossura longocirrata	4,018438
Pol	Myriochele oculata	4,01698	Pol	Tharyx killariensis	3,505455
Pol	Fauvelopsidae spp	3,806911	Cru	Neohela monstrosa	3,346224
Moll	Limopsis minuta	3,554729			
Pol	Euclymene affinis	3,511074	20-40	Таха	Discr. Power
Cru	Eriopisa elongata	3,506131	Moll	Thyasira obsoleta	6,327158
Pol	Myriochele spp	3,47567	Pol	Jasmineira caudata	5,954488
Pol	Heteromastus filiformis	3,294544	Pol	Pherusa falcata	5,726713
Pol	Notomastus sp	3,238173	Pol	Aricidea catherinae	4,794903
			Pol	Augeneria tentaculata	3,812865
60-80	Таха	Discr. Power	Pol	Scoloplos armiger	3,636282
Pol	Myriochele danielsseni	22,18708	Sip	Onchnesoma squamatum	3,602042
Moll	Thyasira succisa	13,42496	Pol	Hyalinoecia tubicola	3,512277
Cru	<i>Harpinia</i> sp	8,311364	Sip	Onchnesoma steenstrupi	3,378465
Sip	Onchnesoma steenstrupi	7,929089	Pol	Streblosoma intestinale	3,109482
Pol	Octobranchus floriceps	7,819224			L
Pol	Owenia fusiformis	7,745275	40-60	Таха	Discr. Power
Pol	Notomastus latericeus	6,891019	Pol	Amythasides macroglossus	5,659208
Pol	Myriochele fragilis	6,716559	Pol	Chone longocirrata	5,000054
Moll	Abra longicallus	6,536641	Moll	Astarte sp	3,413349
Pol	Scolelepis sp	6,128268	Moll	Kelliella miliaris	3,175252
Moll	Chaetoderma sp	5,824765	Pol	Levinsenia gracilis	2,459008
Pol	Maldanidae spp	5,685348	Cru	Lysianassidae spp	2,152263
Cru	Ampelisca tenuicornis	5,614306	Pol	<i>Pista</i> sp	2,114555
Cru	Leptophoxus falcatus	5,465201	Pol	Lumbriclymene sp	2,101358
Pol	Aricidea sp	5,409421	Pol	Dodecaceria concharum	2,066544
Pol	Spiophane surceolata	5,098379	_		
Cru	Gnathia oxyurea	5,030907	60-80	Таха	Discr. Power
Pol	Cirratulus caudatus	4,962701	Pol	Harmothoe sp	5,152434
Moll	Lucinoma borealis	4,868146	Pol	Ditrupa arietina	4,849308
Moll	Phaxas pellucidus	4,831812	Pol	Myriochele danielsseni	4,230194
Pol	Tharyx killariensis	4,789083	Pol	Polydora sp	4,069929
Moll	Yoldiella tomlini	4,772001	Pol	Amythasides macroglossus	3,665944
Pol	Polydora sp	4,724812	Pol	Praxillella praetermissa	3,419912
Moll	Cuspidaria ostrata	4,365463	Moll	Thyasira succisa	3,196062
Pol	Lumbrineris sp	4,155856	Pol	Owenia fusiformis	3,174973
Pol	Pectinaria auricoma	4,089937	Pol	Scolelepis sp	3,028691
Pol	Dodecaceria sp	3,768536	Sip	Onchnesoma steenstrupi	3,003431
Pol	Aricidea roberti	3,610391			
Pol	Levinsenia gracilis	3,529645	80-100	Таха	Discr. Power
Pol	Scolelepis korsuni	3,434747	Pol	Abyssoninoe hibernica	11,66323
Pol	Pholoe baltica	3,431411	Sip	Onchnesoma steenstrupi	8,684384

1					
Cru	Westwoodilla caecula	3,369468	Pol	Apistobranchus tullbergi	7,524094
Pol	Cirrophorus furcatus	3,295871	Cru	Ampelisca gibba	7,263782
Ech	Amphiura filiformis	3,175045	Pol	Jasmineira candela	6,598246
Pol	Eclysippe vanelli	3,155448	Pol	Chone collaris	6,148372
Moll	Caudofoveata spp	3,091685	Pol	Scolelepis tridentata	5,954846
Pol	Myriochele oculata	3,001396	Cru	Natatolana borealis	5,912909
			Pol	Ditrupa arietina	5,730474
80-100	Таха	Discr. Power	Pol	Nephtys hystricis	5,729621
Pol	Abyssoninoe hibernica	12,91062	Moll	Falcidens crossotus	5,72895
Pol	Jasmineira candela	9,032858	Pol	Octobranchus floriceps	4,659126
Cru	Ampelisca gibba	7,639486	Cru	Byblis gaimardi	4,342209
Moll	Falcidens crossotus	6,250767	Pol	Sosanopsis wireni	4,337181
Pol	Nephtys hystricis	6,209275	Pol	Praxillella sp	4,290694
Cru	Ryhlis gaimardi	6 140516	Pol	Pseudopolydora	4 076955
Pol	Nothria conchylega	5 237448	Moll	Cuspidaria costellata	3 931916
Cru	Diastylis boecki	4 894814	Moll	Thyasira succisa	3 912193
Pol	Pholoe inornata	4,634649	Pol	Conjada nonvegica	3 900/81
Pol	Anistobranchus en	4 210512	Pol	Lumbriclymeninae spo	3 880317
Moll	Thyasira pyamaga	4,210312	Pol	Torobollidos stroomi	3,509601
Pol	Inyasila pyyinaea Iosminoiro sp	4,149173	Moll		3,590001
Pol	Drovillelle op	4,139230	Rol	Orbinio ormandi	3,39203
Pol		4,003230	Moll		3,300070
		3,923400	IVIOII		3,301200
POI	Exogone sp	3,907349	Cru	Leptopnoxus faicatus	3,361206
	Abra nitida Tavahall'ida a (waawi	3,897631	POI	Rhodine loveni	3,359514
	i erebellides stroemi	3,853963	POI	Syneimis kiatti	3,359514
	Euchone sp	3,721648	Pol	Euchone sp	3,357005
	Orbinia armandi	3,600138	Moli	Abra nitida	3,257262
Ech	Brissopsis lyrifera	3,427137	Pol	Hydroides norvegica	3,162282
Cru	Ostracoda spp	3,405008	Pol	Laonice sarsi	3,138245
Pol	Lumbrineris sp	3,37819	Pol	Nothria conchylega	3,114992
Pol	Samytha sexcirrata	3,325016	Pol	Apistobranchus sp	3,077016
Pol	Paramphinome jeffreysii	3,207785	Pol	Pectinaria koreni	3,054512
Pol	Rhodine loveni	3,205525			
Pol	Pectinaria koreni	3,052524	>100	Таха	Discr. Power
Pol	Goniada norvegica	3,043745	Pol	Spiophanes sp	
Pol	Eclysippe vanelli	3,033194	Moll	Limatula subauriculata	9,555223
Pol	Laonice sarsi	3,001929	Pol	Protodorvillea kefersteini	7,634731
Moll	Caudofoveata spp Pseudopolvdora	3,000913	Moll	Thracia phaseolina	7,248296
Pol	paucibranchiata	3,00082	Pol	Ditrupa arietina	6,225585
-		· · · ·	Pol	Poecilochaetus sp	5,814672
	Cr		Pol	Anobothrus gracilis	5,672343
20-40	Таха	Discr. Power	Pol	Prionospio fallax	4,93781
Pol	Euchone sp	4,704525	Pol	Travisia forbesii Pseudopolydora	4,883564
Cru	Vargula norvegica	2,509505	Pol	paucibranchiata	4,745543
Moll	Thyasira obsoleta	2,470599	Pol	Capitellidae spp	4,72679
Pol	Branchiomma bombyx	2,309621	Cru	Lysianassidae spp	4,615292
Pol	Macrochaeta polyonyx	2,090349	Pol	Chone sp	4,614429
Pol	Asychis biceps	2,054084	Moll	Thyasira croulinensis	4,594052
Moll	Limopsis minuta	2,053721	Pol	Opisthodonta pterochaeta	4,176662
			Pol	Spiophanes wigleyi	4,163463
80-100	Таха	Discr. Power	Ech	Amphiura filiformis	3,992958
Pol	Pholoe inornata	4,741227	Pol	Clymenura sp	3,590563
Pol	Harmothoe sp	4,532032	Coel	Edwardsia sp	3,53487

- 12 -

Pol	Pectinaria koreni	4,235805	Moll	Yoldiella tomlini	3,5227
Tun	Eugyra arenosa	3,746741	Cru	Synchelidium sp	3,471807
Pol	Chaetozone setosa	3,743017	Pol	Notomastus sp	3,396977
Nem	Nematoda spp	3,729394 ?	Pol	Euchone southerni	3,326564
Cru	Tmetonyx cicada	3,47948	Moll	Gari fervensis	3,130837
Ech	Ophiura affinis	3,260565	Moll	Astarte sulcata	3,068214
Pol	Heteranomia squamula	3.027871	Moll	Mysella bidentata	3.040375
Pol	Nephtys cirrosa	0,021011		myoona bhaontata	0,010010
>100	Таха	Discr. Power		Pb	
Coel	Corymorpha nutans	4,555463	0-20	Таха	Discr. Power
Pol	Pisione remota	3,880468	Pol	Ampharetidae spp	7,263939
Pol	Nothria conchylega	3,711901	Pol	Aonides paucibranchiata	5,223603
Pol	Spio mecznikowianus	3,561625	Cru	Diastylidae spp	5,0258
Cru	Gammaropsis sp	3,387472	Olig	Oligochaeta spp	4,829782
			Pol	Polydora sp	4,496211
	Hg		Pol	Eclysippe vanelli	4,093302
0-20	Таха	Discr. Power	Pol	Chaetozone sp	4,031633
Pol	Euchone sp	5,873927	Moll	Yoldiella lucida	3,572231
Pol	Myriochele oculata	3,551203	Pol	Heteroclymene robusta	3,55172
Pol	Dodecaceria concharum	3,084513	Pol	Spiophanes wigleyi	3,422088
Pol	Clymenura borealis	3,076826	Pol	Euchone incolor	3,400036
Pol	Levinsenia gracilis	3,060738	Pol	Chaetozone setosa	3,244886
Sip	Golfingia spp	3.05567	Pol	Capitellidae spp	3.207818
Moll	Timoclea ovata	3.011461	Moll	Scutopus ventrolineatus	3.130567
		_,	Pol	Ophelina norvegica	3.097384
20-40	Таха	Discr. Power	-		-,
Pol	Tmetonvx similis	6.702544	40-60	Таха	Discr. Power
Moll	Thvasira eumvaria	4.617893	Pol	Paradiopatra quadricuspis	10.72497
Moll	Thyasira obsoleta	4.576499	Pol	Mvriochele oculata	10.04358
Cru	Laetmatophilus	3 454524	Cru	Fudorella emarginata	8 66415
Pol	Ophryotrocha sp	3 425947	Moll	Entalina quinquanqularis	7 001833
Cru	Munna son	3 414779	Moll	Thyasira ferruginea	5 860578
Moll	Modiolula nhaseolina	3 105439	Pol	Paramphinome jeffrevsij	5 809859
WOII	modolala phaseolina	3,103433	Pol	Prionospio cirrifera	5,000000
40-60	Таха	Discr Power	Moll	Chaotozono sotosa	5,797970
Moll	Taxa		Pol	Thomas on	5 42252
Pol	Anuphis sp	7,020703	Pol	Fuchana sp	5 26222
Pol	Amythasidas macroalassus	7 170755	Moll	Corastodorma minimum	5,50255
Pol	Strahlasoma intestinala	7,170755	Pol		3,102703
		7,01039 5 556010			4,990072
Mall	Chaptedormo nitidulum	5,550212	FOI	Laurice saisi	4,942302
Mall		5,344037			4,030000
IVIUII		2,00028			4,303732
POI	Harmounoe sp	3,90928	POI		4,456491
		3,092913			4,110920
	Leptosynapta Innaerens	3,012201		Amythasides macrogiossus	3,930121
	Ampriarete faicata	3,491395		roiaiella luCida	3,0/8080
POI	Pista sp	3,490288		i erepelliaes stroemi	3,824872
	ivemertea spp	3,402286 ?	POI	wugga wanrbergi	3,686234
POI	Aricidea roberti	3,393588	POI	Pholoe pallida	3,6///92
	Polycirrus sp	3,355789	POI		3,601256
Ech	Amphipholis squamata	3,318821	Pol -	Phylo norvegica	3,464161
	Chuainda nardmanni	3 318311	i līun	Ascidiacea spp	3.343518

Pol	Phyllodoce groenlandica	3,109022	Moll	Nucula tumidula	3,260368
POI	Capitella capitata	3,052878	80-100	Таха	Discr. Power
60-80	Таха	Discr. Power	Pol	Myriochele fragilis	6,722714
Moll	Cerastoderma minimum	9,448618	Pol	Owenia fusiformis	5,62505
Pol	Exogone sp	5,348273	Ech	Ophiura affinis	5,293212
Moll	Abra sp	4,893403	Pol	Ampharete sp	4,747067
Cru	Diastvlidae spp	4.887517	Pol	Ampharete finmarchica	4.53929
Cru	Diastylis sp	4,853146	Pol	, Pectinaria koreni	3,873147
Pol	Phoronis sp	4.794178	Moll	Thvasira flexuosa	3.792205
Pol	Streblosoma intestinale	4,70418	Pol	Trichobranchus roseus	3,455713
Pol	Polycirrus sp	4,481028	Pol	Aphrodita aculeata	3,299178
Pol	Amythasides macroalossus	4.254772	Pol	Paramphinome ieffrevsii	3.29265
Pol	Parougia sp	3.926389	Pol	Harmothoe sp	3.155879
Ech	Asteroidea spp	3.632458	Pol	Levinsenia gracilis	3.103884
Pol	Notomastus latericeus	3.629781			-,
Pol	Aricidea laubieri	3.59736	>100	Таха	Discr. Power
Moll	Retusa umbilicata	3.372866	Pol	Owenia fusiformis	5.055848
Cru	l vsianassidae spp	3.371793	Pol	l anice conchilega	4.016524
Moll	Thyasira flexuosa	3 370436	Pol	Notomastus latericeus	2 912966
Pol	Aricidea wassi	3 167576	Moll	Antalis sp	2 84651
Pol	Ampharete lindstroemi	3 164838	Pol	Spionhanes urceolata	2,805353
Pol	Ampharete infastroenni Onhelina modesta	3 119938	Pol	Sthenelais limicola	2,000000
Pol		3,113350	Pol	Myriochele danielsseni	2,003014
Pol	Photos pallida	3,111404	Pol	Glycora Japidum	2,7 52025
Pol		3,07,3474	Cru		2,023903
Cru	Suncholidium sp	2 02/15	Pol	Chopo sp	2,503002
Pol	Synchelialan sp	3,03415	Cool	Corianthua Ilaudii	2,505197
FUI	Cirratulus cirratus	3,023309	Moll		2,493012
90 100	Toyo	Disor Dowor	Dol		2,301003
Cool	Taxa		Pol		2,29391
Moll	Corymorpha nutaris	5 594022	Moll	Mysolla son	2,207025
Ech	Echinus sp	5,004032	Pol	Spionhanos krovori	2,220795
	Echinus sp Chono dunori	3,077340	Pol	Spiophanes kroyen	2,221027
		4,000200	FUI	Nemetede enn	2,200030
Poi		4,000200	Del	Onbryetrocho on	2,127340
		4,473646	Pol		2,103241
POI	Clymenura borealis	4,043642	POI	Aricidea simonae	2,051635
POI	Giycera tridactyla	3,919954	ECN	Ampniura filitormis	2,041248
	Faicidens crossotus	3,689526	Pol	Exogone verugera	2,024002
Moll	Diastylis cornuta	3,589269	Moll	Philine sp	2,018152
Moll	Diastylis goodsiri	3,519481		· · · · · · · · · · · · · · · · · · ·	
Moll	Thyasira succisa	3,453652		Zn	
Pol	<i>Euclymene</i> sp	3,449576	0-20	Таха	Discr. Power
Moll	Ampelisca gibba	3,302516	Ech	Echinocucumis hispida	6,709069
Pol	Ampharete falcata	3,230049	Pol	Euchone incolor	4,904954
Pol	Euchone southerni	3,224253	Pol	Fauvelopsidae spp	4,874652
Pol	Heteranomia squamula	3,223625	Pol	Spiophanes kroyeri	4,449471
Pol	Tharyx killariensis	3,167912	Sip	Onchnesoma squamatum	4,106073
Pol	Cirratulus caudatus	3,109073	Pol	Pectinaria auricoma	3,557794
			Pol	Myriochele oculata	3,551203
>100	Таха	Discr. Power	Pol	Paradiopatra quadricuspis	3,144405
Pol	Spiophanes sp	7,111158	Sip	Onchnesoma steenstrupi	3,133645
Pol	Clymenura sp	5,840074			
Cru	- Diastyloides hinlicata	5 437723	60-80	Таха	Discr Powe

Pol Circophous funcatus 5,187222 Pol Octobranchus finiciops 8,869392 Pol Spio sp 4,9809 Cru Harpinia sp 8,11524 Pol Tranyx kilinerinsis 4,03584 Moli Ana fanjicallus 7,230519 Pol Chone sp 3,94735 Pol Notonasuti laterosus 7,19801 Pol Chone sp 3,03653 Cru Grathie oxyuree 6,015283 Pol Decalins Jone Sp 5,439845 80-100 Taxa 5,767752 Pol Diraya ariotina 3,799155 Pol Dodecacens sp 4,719853 Pol Diraya ariotina 3,799155 Pol Dodecacens sp 4,719853 Pol Prizonspio dubia 3,274538 Pol Prizonspio cirrifera 4,57325 Pol Natatolana borealis 3,774538 Pol Prizonspio cirrifera 4,57325 Pol Aprinospio dubia 3,246078 Moli Cruspicaria restrata 4,05633 Pol Aprinocela dubia <th>Pol</th> <th>Chone duneri</th> <th>5,337407</th> <th>Sip</th> <th>Onchnesoma steenstrupi</th> <th>9,295469</th>	Pol	Chone duneri	5,337407	Sip	Onchnesoma steenstrupi	9,295469
Pol Spin sp 4,98800 Cru Harphin sp 8,880302 Moll Limerule subauriculate 4,677575 Pol Maidanidae spp 8,115242 Pol Chone sp 3,984735 Pol Notomastus latericeus 7,19801 Pol Chone sp 3,984735 Pol Notomastus latericeus 7,19801 Pol Chone sp 3,464404 Moll Chaetchormas pp 6,335529 Pol Protodorvilles Aelersteini 3,03673 Cru Cantelia oxyume 6,015283 B0-100 Taxa Discr. Power Moll Volderial comini 4,778236 Pol Doceanes 3,75915 Pol Doceaceoren sp 4,778237 Pol Pronospio dubia 3,247354 Pol Cruse diation cortata 4,662438 Pol Pronospio dubia 3,247674 Moll Cruse finiteria cortata 4,508586 Pol Morochele danielsseni 3,104584 Cru Ampelsos cirroris 3,406638 Pol Molnochele danielsseni	Pol	Cirrophorus furcatus	5,187822	Pol	Octobranchus floriceps	8,951236
Noli Linatule subauriculate 4,677575 Pol Moli Abra longicallus 7,230519 Pol Chone sp 3,984735 Pol Notomasus latericeus 7,139519 Pol Capitellidae spp 3,464404 Moli Chaetoderma sp 6,353229 Pol Procodorvillae kafersteini 3,335653 Cru Leptophoxus faletaus 6,015233 Pol Procodorvillae kafersteini 3,335653 Cru Leptophoxus faletaus 6,015233 Pol Docealins Ann Pogonophora spp 5,439845 Pol Distrupa arietina 3,799195 Pol Dodecaceria sp 4,719653 Pol Natatokana boreakis 3,774538 Pol Pronospio cirrifera 4,508568 Pol Nophys cirrosa 3,246078 Moli Trayaria fakxoosa 4,682563 Pol Poinospio dubia 3,104584 Cru Ampelisca tenuicormis 3,406703 Pol Moiniche acida aria 2,44245 Pol Luriotensis 3,248078 Pol Apri	Pol	<i>Spio</i> sp	4,98809	Cru	<i>Harpinia</i> sp	8,869392
Pol Trayx kilariansis 4.035884 Moli Abra longicallus 7.200519 Pol Chone sp 3.984735 Pol Notomastus latericeus 7.19801 Pol Capitellidae spp 3.44404 Moli Cruetericeus 7.19801 Pol Polecalins Ann Pogonophora spp 6.35529 Bo-100 Taxa Discr. Power Moli Voldella tomlini 4.778203 Pol Discr. Power Moli Voldella tomlini 4.778203 Pol Exogone hebes 3.774538 Pol Pol codesceria sp 4.718533 Pol Piotospio dubia 3.246078 Moli Cusponic cirrifera 4.573313 Pol Prionospio dubia 3.246078 Moli Cuspitaria restrata 4.508588 Moli Minochele danielisseri 3.110151 Pol Euclymeninae spp 4.112061 Cru Ericthonius spp 3.144584 Pol Eclysipp vaneli 3.288262 Pol Myriochele danielisseri 3.110151 Pol	Moll	Limatula subauriculata	4,677575	Pol	Maldanidae spp	8,115242
Pol Chone sp. 3,984735 Pol Natomastus Istericus 7,19801 Pol Protodovillea ketersteini 3,03653 Cru Gnathio gyurea 6,015233 Pol Protodovillea ketersteini 3,03653 Cru Leptophoxus falcatus 5,767752 Solo Decalins Ann Pogenophora sp. 5,43945 Sol-100 Taxa Discr. Power Moll Voidella tomlini 4,778203 Pol Didecaceria sp. 4,719653 Arricides sp. 4,676313 Pol Naphrys cirosa 3,278534 Pol Prionospic cirrifora 4,576313 Pol Martochel danielsseni 3,110151 Pol Euvismenia gradilis 4,405638 Pol Anrides puscibranchata 3,046224 Moll Traysista froutinas 3,28909 Moll Timospic acritionvianus 2,47436 Moll Traysista croulinensis 3,28926 Pol Aprides puscibranchata 3,04824 Moll Traysista croulinensis 3,28926 Pol Aprides viras <td>Pol</td> <td>Tharyx killariensis</td> <td>4,035884</td> <td>Moll</td> <td>Abra longicallus</td> <td>7,230519</td>	Pol	Tharyx killariensis	4,035884	Moll	Abra longicallus	7,230519
Pol Capitellidae spp 3.484404 Moll Chaetoderma sp 6.535329 Pol Protodovillea kefarstaini 3.036563 Cru Egrahia oxyurea 6.015283 B0-100 Taxa Discr. Power Moll Voldelia tomlini 4.778203 Pol Ditrupa analina 3.799195 Pol Dodecaeria sp 4.762203 Cru Natatolana borealis 3.774538 Pol Aricidea sp 4.779203 Pol Exogone hebes 3.375051 Nem Nemstoda spp 4.577335 Pol Pol prinospic drubia 3.246078 Moll Tryasira flexuosa 4.482567 >100 Taxa Discr. Power Pol Loursectar texuosa 4.405633 Pol Myriochele danielszeni 3.110151 Pol Loursectar texuosa 3.438399 Pol Anrides paucibranchiata 3.04824 Moll Tryasira flexuosa 3.238399 Pol Anrides paucibranchiata 3.04824 Pol Loursheaia cordineas 3.223805 Pol	Pol	Chone sp	3,984735	Pol	Notomastus latericeus	7,19801
Pol Protoconvilse kelersteini 3,036663 Cru Grathia oxyurea 6,015283 Cru Laptophoxus fricatuus 5,75752 Decalins Ann Pogonophora spp 5,439845 80-100 Taxa Discr. Power Moli Yoldella tomlini 4,77820 Pol Ditrupa antelina 3,77453 Pol Aricidea sp 4,66243 Pol Natatolana borealis 3,77453 Pol Prionospic cirifera 4,577325 Pol Nephtys cirrosa 3,278534 Pol Crusinia rostata 4,505568 Pol Nephtys cirrosa 3,278078 Moli Tryasira flexuosa 4,482567 >100 Taxa Discr. Power Pol Levimenina espp 4,112081 Cru Ericthonius spp 3,104584 Cru Ampelisca tenulcorris 3,406703 Pol Annicks paucibranchiata 3,048224 Moli Tryasira croulinensis 3,28909 Pol Annicks aucibranchiata 3,048734 Molii Tryasira croulinensis 3,28909	Pol	Capitellidae spp	3,464404	Moll	Chaetoderma sp	6,353529
Cru Leptophoxus falcatus 5,767752 B0-100 Taxa Discr. Power Moll Yoldiella tomlini 4,778203 Pol Ditrupa arietina 3,799195 Pol Dodecaceris sp 4,718653 Cru Natatolana borealis 3,774538 Pol Arioidea sp 4,662438 Pol Exagone hebes 3,3774538 Pol Arioidea sp 4,662438 Pol Prionospio outrifera 4,577325 Moll Tryasira flexuosa 4,462453 Pol Prionospio outrifera 4,505568 4,405587 4,405587 >100 Taxa Discr. Power Pol Euvinsenia gracilis 4,405573 Pol Myriochele danielsseni 3,110151 Pol Euvinsenia gracilis 3,406703 Pol Spio mecznikowianus 2,474245 Pol Eclysippe vanelli 3,283909 Moll Timaclea ovata 2,247424 Pol Myriochele oculata 3,18185 Pol Polycirus sp 2,2174024 Pol Myriochele oculata <t< td=""><td>Pol</td><td>Protodorvillea kefersteini</td><td>3,036563</td><td>Cru</td><td>Gnathia oxyurea</td><td>6,015283</td></t<>	Pol	Protodorvillea kefersteini	3,036563	Cru	Gnathia oxyurea	6,015283
Decalins Ann Pogonophora spp 5.439845 80-100 Taxa Discr. Power Moll Voldiella tomilni 4.778203 Pol Ditrupa arielina 3.79195 Pol Aricidea sp 4.718203 Pol Exogone hebes 3.375001 Nem Nematoda spp 4.577325 Pol Prionospio dubia 3.246078 Moll Cuspidaria rostrata 4.508568 >100 Parionospio dubia 3.246078 Moll Cuspidaria rostrata 4.508568 >101 Myriochele danielsseni 3.110151 Pol Evolymeninae spp 4.112061 Cru Ericthonius spp 3.048224 Moll Falcienscrossouius 3.383099 Moll Timoclea ovata 2.64245 Pol Eclysippe vanelli 3.283842 Pol Aphytoseita get 2.3132 Moll Publelum foldenes 3.228805 Pol Polycinus sp 2.274024 Pol Moll Prubellum foldenes 3.228862 Pol Polycinus sp 2.201777 Tru <td><u></u></td> <td></td> <td></td> <td>Cru</td> <td>Leptophoxus falcatus</td> <td>5,767752</td>	<u></u>			Cru	Leptophoxus falcatus	5,767752
B0-100 Taxa Discr. Power Moli Yoldiella tomlini 4,778203 Cru Natatolana borealis 3,779195 Pol Dodecaceria sp. 4,719653 Cru Natatolana borealis 3,774538 Pol Aricidea sp. 4,652438 Pol Exogone hebes 3,375001 Nem Nematoda spp. 4,577335 Pol Prionospio dubia 3,2746534 Pol Prionospio dubia 4,456563 Pol Prionospio dubia 3,246078 Moli Cuspidaria rostrata 4,450563 Pol Ericthonius sp. 3,104584 Cru Andrés pauchranchiata 3,046524 Pol Aorides pauchranchiata 3,048524 Moli Tuyasira crutilnensis 3,28390 Moli Timoclea ovata 2,64245 Pol Eclysippe vanelli 3,28326 Pol Polycirrus sp 2,3132 Moli Tuyasira crutilnensis 3,28842 Cru Bathyporeia sp 2,274024 Pol Myriochele oculata 3,118185 Pol P		Decalins	•	Ann	Pogonophora spp	5,439845
Pol Ditrupa arietina 3,799195 Pol Dodecaceria sp 4,719653 Cru Natatolana borealis 3,774538 Pol Aricidea sp 4,662438 Pol Exogone hebes 3,375001 Nem Nematoda spp 4,577325 Pol Prionospio dubia 3,246078 Moll Cuspidaria rostrata 4,50558 Pol Prionospio dubia 3,246078 Moll Cuspidaria rostrata 4,462567 >100 Taxa Discr. Power Pol Euvinsenia gracilis 4,462567 Pol Molif Spatichers consorus 3,346073 3,46673 3,346073 Pol Anides paucibranchiata 3,048224 Moll Falcihers consorus 3,3283909 Moll Timoclea ovata 2,64245 Pol Eclysippe vanelli 3,228962 Pol Spio mecznikowianus 2,274024 Pol Myriochele oculata 3,18185 Pol Polycirrus sp 2,201702 Tun Eugyra arenosa 3,120707 Cru Athylas vedlomensis	80-100	Таха	Discr. Power	Moll	Yoldiella tomlini	4,778203
Cru Natatolana borealis 3,774538 Pol Aricidea sp 4,662438 Pol Exogone hebes 3,37501 Nem Nemotoda spp 4,577325 Pol Nephys cirrosa 3,278534 Pol Prionospio cirrifera 4,508568 Pol Prionospio cirrifera 4,508568 Molil Cuspidaria rostrata 4,405638 Pol Levinsenia gracilis 4,405638 Molil Thysisria flexuosa 4,425657 Pol Anrides paucibranchiata 3,046224 Molil Falcidens crossotus 3,38309 Pol Anicides paucibranchiata 3,046224 Molil Falcidens crossotus 3,328926 Pol Anicides paucibranchiata 3,046224 Molil Fritzortinensis 3,28926 Pol Apricele oval 2,46245 Pol Evispoe vanelli 3,28926 Pol Apricele oval 2,47424 Molil Thysicin coroultan 3,18185 Pol Apricele oval 2,257984 Cru Nicippe turnida 3,18764 Cru<	Pol	Ditrupa arietina	3.799195	Pol	Dodecaceria sp	4,719653
Pol Exogone hebes 3,375001 Nem Nematoda spp 4,577325 Pol Prionospio dubia 3,276534 Pol Prionospio cirrifera 4,567332 Pol Prionospio dubia 3,246078 Moll Cuspidaria rostrata 4,507325 \$100 Taxa Discr. Power Pol Levinsenia gracilis 4,482567 \$210 Taxa Discr. Power Pol Levinsenia gracilis 4,482567 \$210 Taxa Discr. Power Pol Levinsenia gracilis 4,482567 \$210 Aonides paucibranchiata 3,048224 Moll Falcidens crossotus 3,383909 Moll Timoclea ovata 2,64245 Pol Eclysippe vanelli 3,228926 Pol Splo mezznikowianus 2,47436 Moll Thysiair acroulinensis 3,228926 Pol Polycimus sp 2,274024 Pol Myricohele oculata 3,188185 Pol Polycimus sp 2,270173 Cru Eurydice pulchra 3,136554 Cru Grathia	Cru	Natatolana borealis	3.774538	Pol	Aricidea sp	4.662438
Pol Nephtys cirrosa 3,278534 Pol Prionospio cirrifera 4,576313 Pol Prionospio dubia 3,246078 Moll Cuspideria rostrata 4,50658 >100 Taxa Discr. Power Pol Leurisenia gracilis 4,405638 Pol Myriochele danielsseni 3,110151 Pol Euclymeninae spp 4,112061 Cru Ericthonius spp 3,104584 Cru Ampelisca tenucornis 3,383909 Moll Timoclea ovata 2,64245 Pol Eclysippe vanelli 3,288842 Cru Bathyporeia sp 2,274024 Pol Myriochele oculata 3,188185 Pol Polycirurus sp 2,274024 Pol Myriochele oculata 3,188185 Pol Polycirurus sp 2,274024 Pol Myriochele oculata 3,18784 Cru Adylus vedlomensis 2,22805 Pol Scalibregram inflatum 3,156784 Cru Adylus vedlomensis 2,200176 Tu Eurydice pulchra 3,115693 Pol	Pol	Exogone hebes	3.375001	Nem	Nematoda spp	4.577325
Pol Prionspio dubia 3,246078 Moll Cuspidaria rostrata 4,508568 >100 Taxa Discr. Power Pol Levinsenia gracilis 4,405638 Pol Myriochele danielsseni 3,110151 Pol Leulymeninae spp 4,112061 Cru Ericthonius spp 3,104584 Cru Ampelisca tenuicornis 3,383909 Pol Aorides paucibranchiata 3,048224 Moll Fabidens crossotus 3,383909 Pol Spio mecznikowianus 2,47436 Moll Tryasira croulinensis 3,28926 Pol Spio mecznikowianus 2,474024 Pol Myriochele oculata 3,188185 Pol Polycirrus sp 2,274024 Pol Myriochele oculata 3,186784 Cru Bathyporeia sp 2,221885 Pol Scalibregma inflatum 3,135554 Cru Gnathia oxyuree 2,200186 Pol Ditrupa arietina 3,077393 Pol Lumbrineris gracills 2,00106 Moll Phaxas pellucidus 3,077393	Pol	Nephtvs cirrosa	3.278534	Pol	Prionospio cirrifera	4.576313
Nonital Nonital Moli Thyasira flexuosa 4,482567 >100 Taxa Discr. Power Pol Levinsenia gracilis 4,482567 Pol Myriochele danielsseni 3,110151 Pol Euclymeninae spp 4,112061 Cru Entchonius spp 3,104584 Cru Annelicas tenuicornis 3,406703 Pol Aonides paucibranchiata 3,048224 Moll Flackdens crossotus 3,383909 Moll Timoclea ovata 2,47436 Moll Thyasira croulinensis 3,288842 Pol Eolysippe vanelli 3,288842 Cru Molitotense 3,22305 Pol Polycirrus sp 2,274024 Pol Myriochele oculata 3,186185 Cru Adylus vediomensis 2,212885 Pol Scalibregma inflatum 3,135554 Cru Themisto compressa 2,203773 Cru Eurydice pulchre 3,116933 Pol Chone duneri 2,001024 Moll Tridonta montagui 2,063596	Pol	Prionospio dubia	3.246078	Moll	Cuspidaria rostrata	4.508568
>100 Taxa Discr. Power Pol Levinsenia gracilis 4,405638 Pol Myriochele danielsseni 3,110151 Pol Euclymeninae spp 4,112061 Cru Ericthonius spp 3,104584 Cru Ampelicae tenuicornis 3,406703 Pol Aonides paucibranchiata 3,048224 Moll Falcidens crossotus 3,383999 Moll Timoclea ovata 2,64245 Pol Eclysippe vanelli 3,28926 Pol Spio mecznikowianus 2,47436 Moll Thyasira croulinensis 3,28926 Pol Polycirrus sp 2,274024 Pol Myriochele oculata 3,188185 Pol Phisidia aurea 2,257984 Cru Nicippe tunida 3,18764 Cru Grathia oxyurea 2,201777 Tun Eurydice pulchra 3,1156554 Cru Grathia oxyurea 2,201773 Cru Eurydice pulchra 3,115693 Pol Lumbrineris gracilis 2,200186 Moll Phaxas pellucidus 3,0777393 Pol			,	Moll	Thvasira flexuosa	4.482567
Pol Myriochele danielsseni 3,110151 Pol Euclymeninae spp 4,112061 Cru Ericthonius spp 3,104584 Cru Arneles paucioranchiata 3,046703 Pol Aonides paucioranchiata 3,048224 Moll Falcidens crossous 3,383909 Moll Timoclea ovata 2,64245 Pol Edysippe vanelli 3,28926 Pol Spio mecznikowianus 2,47436 Moll Thyasira croulinensis 3,28984 Cru Bathyporeia sp 2,2374024 Pol Myriochele oculata 3,188185 Pol Polycirrus sp 2,212885 Pol Scalibregma inflatum 3,135554 Cru Grathia oxyurea 2,201707 Tun Eurydice pulchra 3,115693 Pol Chone duneri 2,200186 Pol Ditrupa arielina 3,07733 Pol Euridia ockelmanni 2,08172 Nem Spio 0,07755 Pol Euridia ockelmanni 2,080786 Spio 0,0174733 5,15575 Pol Apisto	>100	Таха	Discr. Power	Pol	Levinsenia gracilis	4,405638
Cru Erichhonius spp 3,104584 Cru Ampelisaa tenuicornis 3,406703 Pol Aonides paucibranchiata 3,048224 Moll Falcidens crossotus 3,383909 Moll Timoclea ovata 2,64245 Pol Eclysippe vanelli 3,28926 Pol Spio mecznikowianus 2,47436 Moll Thyasira croulinensis 3,28842 Cru Bathyporeia sp 2,39132 Moll Pulsalium lofotense 3,22305 Pol Polycirrus sp 2,274024 Pol Myriochele oculata 3,186784 Cru Atylus vedlomensis 2,212885 Pol Scalibregma inflatum 3,15554 Cru Grathia oxyurea 2,201773 Cru Eurydice pulchra 3,115693 Pol Chone duneri 2,200186 Pol Ditrupa arietina 3,007755 Pol Lumbrineris gracilis 2,00186 Pol Discr. Power Nethys cirrosa 6,823652 Moll Abra sp 2,053729 Pol Nephtys cirrosa 6,823652	Pol	Myriochele danielsseni	3.110151	Pol	Euclymeninae spp	4,112061
Pol Annides paucibranchiata 3,048224 Molt Faic/dens crossotus 3,333909 Molt Timoclea ovata 2,64245 Pol Eclysippe vanelli 3,28926 Pol Spio mecznikowianus 2,47436 Molt Thyasira croutinensis 3,288842 Cru Bathyporeia sp 2,39132 Molt Pulseilum lofotense 3,22805 Pol Polycirrus sp 2,274024 Pol Myriochele oculata 3,188185 Pol Phisidia aurea 2,257984 Cru Nicipe tumida 3,168784 Cru Gnathia oxyurea 2,20177 Tun Eugyra arenosa 3,10707 Cru Gnathia oxyurea 2,20186 Pol Ditrupa arietina 3,07753 Pol Chone duneri 2,200186 Molt Phaxas pellucidus 3,007755 Pol Eumida ockelmanni 2,00124	Cru	Fricthonius spp	3,104584	Cru	Ampelisca tenuicornis	3,406703
Moll Timoclea ovata 2,64245 Pol Eclysipe vanelli 3,28926 Pol Spio mecznikowianus 2,47436 Moll Thyasira croulinensis 3,28842 Cru Bathyporeia sp 2,39132 Moll Putsellum loftense 3,22305 Pol Polycirrus sp 2,274024 Pol Myriochele oculata 3,188784 Cru Atylus vedlomensis 2,212885 Pol Scalibregma inflatum 3,135554 Cru Grathia oxyurea 2,203773 Cru Eurydice putchra 3,110707 Cru Grathia oxyurea 2,200186 Pol Ditrupa arietina 3,077393 Pol Chone duneri 2,00186 Moll Phaxas pellucidus 3,007755 Pol Eurnida ockelmanni 2,091024 Moll Tridonta montagui 2,080584 80-100 Taxa Discr. Power Nmt Nemertea spp 2,055967 Sip Onchnesoma steenstrupi 6,666541 Cru Discr. Power <td>Pol</td> <td>Aonides paucibranchiata</td> <td>3.048224</td> <td>Moll</td> <td>Falcidens crossotus</td> <td>3,383909</td>	Pol	Aonides paucibranchiata	3.048224	Moll	Falcidens crossotus	3,383909
Pol Spio meconikowianus 2.47436 Moll Thyssira croulinensis 3.288842 Cru Bathyporeia sp 2,39132 Moll Pulsellum lofotense 3.223805 Pol Phycirrus sp 2,274024 Pol Myriochele oculata 3,188185 Pol Phisidia aurea 2,257984 Cru Nicippe tumida 3,18554 Cru Atylus vediomensis 2,212885 Pol Scalibregma inflatum 3,135554 Cru Ganthia oxyurea 2,204177 Tun Eugyra arenosa 3,120707 Cru Themisto compressa 2,203773 Cru Eurydice pulchra 3,115693 Pol Chone duneri 2,200186 Moll Phaxas pellucidus 3,007755 Pol Lumbrineris gracilis 2,00186 Moll Phaxas pellucidus 3,007755 Pol Lumbrineris gracilis 2,00186 Moll Phaxas pellucidus 3,007755 Pol Lumbrineris gracilis 2,005967 Sip Onchnesoma steenstrupi 6,666541 Osc. <td>Moll</td> <td>Timoclea ovata</td> <td>2.64245</td> <td>Pol</td> <td>Eclysippe vanelli</td> <td>3.28926</td>	Moll	Timoclea ovata	2.64245	Pol	Eclysippe vanelli	3.28926
Cru Bathyporeia sp 2,39132 Moll Pulsellum lofotense 3,223805 Pol Polycirrus sp 2,274024 Pol Myriochele oculata 3,188185 Pol Phisidia aurea 2,257984 Cru Nicippe turnida 3,188784 Cru Atylus vedlomensis 2,12885 Pol Scalibregma inflatum 3,135554 Cru Gnathia oxyurea 2,203773 Cru Eurydice pulchra 3,115693 Pol Chone duneri 2,200186 Pol Ditrupa arietina 3,077393 Pol Lumbrineris gracilis 2,200186 Moll Phaxas pellucidus 3,007755 Pol Eumida ockelmanni 2,0091024 80-100 Taxa Discr. Power Moll Abra sp 2,063729 Pol Nephtys cirrosa 6,823652 Moll Abra sp 2,055967 Sip Onchnesoma steenstrupi 6,666541 Cru Diastylidae spp 7,552503 Pol Apistobranchus tullbergi 5,374726	Pol	Spio mecznikowianus	2.47436	Moll	Thyasira croulinensis	3.288842
Poly Polycinus sp 2,274024 Pol Myriochele oculata 3,188185 Pol Phisidia aurea 2,257984 Cru Nicippe tumida 3,168784 Cru Atylus vedlomensis 2,212885 Pol Scalibregma inflatum 3,1320707 Cru Gnathia oxyurea 2,204177 Tun Eugyra arenosa 3,120707 Cru Themisto compressa 2,203773 Cru Eurydice pulchra 3,115693 Pol Chone duneri 2,200186 Pol Ditrupa arietina 3,077393 Pol Lumbrineris gracilis 2,200186 Noll Phaxas pellucidus 3,007755 Pol Eumida ockelmanni 2,091024 80-100 Taxa Discr. Power Nmt Nemertea spp 2,065729 Pol Nephtys cirrosa 6,823652 Moll Abra sp 2,055967 Sip Onchnesoma steenstrupi 6,666541 Cru Diastrineira sp 7,352503 Pol Apistobranchus tullbergi 5,374726 <	Cru	Bathyporeia sp	2.39132	Moll	Pulsellum lofotense	3.223805
PolPhisidia aurea2,257984CruNicippe tumida3,168784CruAtylus vedlomensis2,212885PolScalibregma inflatum3,135554CruGnathia oxyurea2,204177TunEugyra arenosa3,120707CruThemisto compressa2,203773CruEurydice pulchra3,115993PolChone duneri2,200186PolDitrupa arietina3,07793PolEumida ockelmanni2,091024MollPhaxas pellucidus3,007755MollTridonta montagui2,08058480-100TaxaDiscr. PowerNmtNemertea spp2,063729PolNephtys cirrosa6,823652MollAbra sp2,055967SipOnchnesoma steenstrupi6,666541PolJasmineira sp5,572777PolApistobranchus tullbergi5,374726PolApistobranchus tullbergi5,374726PolApistobranchus tullbergi5,15575PolAmpharetidae spp7,352503PolPectinaria korneni4,817464CruDiastylidae spp5,552461PolJasmineira candela4,584799MollThyasira crulinensis4,327353MollArcopagia balaustina3,94188CruNatatolana borealis4,018495MollCaudofoveata spp3,645514SipOnchnesoma squamatum3,8663CruByblis gaimardi3,649238PolPeldvdra sp3,315097PolHarmothoe glabra3,38863PolPolydora	Pol	Polvcirrus sp	2.274024	Pol	Mvriochele oculata	3,188185
Cru Atylus vediomensis 2,212885 Pol Scalibregma inflatum 3,135554 Cru Gnathia oxyurea 2,204177 Tun Eugyra arenosa 3,120707 Cru Themisto compressa 2,203773 Cru Eurydice pulchra 3,115693 Pol Chone duneri 2,200186 Pol Ditrupa arietina 3,077393 Pol Lumbrineris gracilis 2,200186 Moll Phaxas pellucidus 3,007755 Pol Eumida ockelmanni 2,091024 Moll Phaxas pellucidus 3,007755 Moll Tridonta montagui 2,080584 80-100 Taxa Discr. Power Nmt Nemertea spp 2,065729 Pol Nephtys cirrosa 6,823652 Moll Abra sp 2,055967 Sip Onchnesoma steenstrupi 6,666541 Cru Diastylidae spp 7,352503 Pol Apistobranchus tullbergi 5,374726 O-20 Taxa Discr. Power Pol Abyssoninoe hibernica 5,15575 Noll Thyasi	Pol	Phisidia aurea	2.257984	Cru	Nicippe tumida	3.168784
Cru Gnathia oxyurea 2,204177 Tun Eugyra arenosa 3,120707 Cru Themisto compressa 2,203773 Cru Eurydice pulchra 3,115693 Pol Chone duneri 2,200186 Pol Ditrupa arietina 3,077393 Pol Lumbrineris gracilis 2,200186 Moll Phaxas pellucidus 3,007755 Pol Eurrida ockelmanni 2,091024 Moll Phaxas pellucidus 3,007755 Pol Eurrida ockelmanni 2,091024 Moll Phaxas pellucidus 3,007755 Nmt Nemertea spp 2,065967 Sip Onchnesoma steenstrupi 6,666541 Moll Abra sp 2,055967 Sip Onchnesoma steenstrupi 5,572777 Pol Jasmineira sp 5,572777 Pol Abyssoninoe hibernica 5,15575 Pol Ampharetidae spp 7,352503 Pol Pectinaria koreni 4,817464 Cru Diastylidae spp 5,525461 Pol Jasmineira candela 4,584799 Moll <t< td=""><td>Cru</td><td>Atvlus vedlomensis</td><td>2.212885</td><td>Pol</td><td>Scalibregma inflatum</td><td>3.135554</td></t<>	Cru	Atvlus vedlomensis	2.212885	Pol	Scalibregma inflatum	3.135554
CruThemisto compressa2,203773CruEurydice pulchra3,115693PolLumbrineris gracilis2,200186PolDitrupa arietina3,077393PolLumbrineris gracilis2,200186MollPhaxas pellucidus3,007755PolEurrida ockelmanni2,091024MollPhaxas pellucidus3,007755MollTridonta montagui2,08058480-100TaxaDiscr. PowerNmtNemertea spp2,063729PolNephtys cirrosa6,823652MollAbra sp2,055967SipOnchnesoma steenstrupi6,666541PolJasmineira sp5,572777PolApistobranchus tullbergi5,3747260-20TaxaDiscr. PowerPolApistobranchus tullbergi5,374726PolAmpharetidae spp7,352503PolPectinaria koreni4,817464CruDiastylidae spp5,525461PolJasmineira candela4,584799MollThyasira croulinensis4,327353MollArcopagia balaustina3,94188CruNatatolana borealis4,018495MollCaudofoveata spp3,675514SipOnchnesoma squamatum3,8863CruBybis gaimardi3,6449238PolPolydora sp3,314897PolHarmothoe glabra3,33863PolPolydora sp3,018177MollFalcidens crossotus3,138806PolNephtys hystricis3,103473PolNephtys hystricis3,10347360-80 <td>Cru</td> <td>Gnathia oxvurea</td> <td>2.204177</td> <td>Tun</td> <td>Eugvra arenosa</td> <td>3.120707</td>	Cru	Gnathia oxvurea	2.204177	Tun	Eugvra arenosa	3.120707
PolChone duneri2,200186PolDitrupa arietina3,077393PolLumbrineris gracilis2,200186MollPhaxas pellucidus3,007755PolEumida ockelmanni2,091024MollPhaxas pellucidus3,007755MollTridonta montagui2,08058480-100TaxaDiscr. PowerNmtNemertea spp2,063729PolNephtys cirrosa6,823652MollAbra sp2,055967SipOnchnesoma steenstrupi6,666541PolJasmineira sp5,572777PolApistobranchus tullbergi5,3747260-20TaxaDiscr. PowerPolApistobranchus tullbergi5,374726PolApistobranchus tullbergi5,3747260-20TaxaDiscr. PowerPolApistobranchus tullbergi5,15575PolAmpharetidae spp7,352503PolPectinaria koreni4,817464CruDiastylidae spp5,525461PolJasmineira candela4,584799MollThyasira croulinensis4,327353MollCaudofoveata spp3,675514SipOnchnesoma squamatum3,84863CruByblis gaimardi3,649238PolPolydora sp3,815098CruAmpelisca gibba3,644492PolPolydora sp3,018177MollFalcidens crossotus3,138806PolMyriochele oculata3,018177MollFalcidens crossotus3,138806PolMyriochele oculata10,9007>100 <td< td=""><td>Cru</td><td>Themisto compressa</td><td>2.203773</td><td>Cru</td><td>Eurvdice pulchra</td><td>3.115693</td></td<>	Cru	Themisto compressa	2.203773	Cru	Eurvdice pulchra	3.115693
PolLumbrineris gracilis2,200186MollPhaxas pellucidus3,007755PolEumida ockelmanni2,091024II<	Pol	Chone duneri	2.200186	Pol	Ditrupa arietina	3.077393
PolEumida ockelmanni2,091024MollTridonta montagui2,08058480-100TaxaDiscr. PowerNmtNemertea spp2,063729PolNephtys cirrosa6,823652MollAbra sp2,055967SipOnchnesoma steenstrupi6,666541PolJasmineira sp5,572777PolApistobranchus tullbergi5,3747260-20TaxaDiscr. PowerPolAbyssoninoe hibernica5,15575PolAmpharetidae spp7,352503PolPectinaria koreni4,817464CruDiastylidae spp5,525461PolJasmineira candela4,584799MollThyasira croulinensis4,327353MollArcopagia balaustina3,94188CruNatatolana borealis4,018495MollCaudofoveata spp3,675514SipOnchnesoma squamatum3,8863CruByblis gaimardi3,649238PolPolydora sp3,815098CruAmpelisca gibba3,644492PolPectinaria auricoma3,344882PolHarmothoe glabra3,383863PolPolycipe vanelli3,165974PolLumbriclymeninae spp3,28294PolMyriochele oculata3,018177MollFalcidens crossotus3,138806PolNephtys hystricis3,103473PolNephtys hystricis3,10347360-80TaxaDiscr. Power>100TaxaDiscr. powerMollThyasira succisa10,9007>100TaxaD	Pol	Lumbrineris gracilis	2.200186	Moll	Phaxas pellucidus	3.007755
MollTridonta montagui2,08058480-100TaxaDiscr. PowerNmtNemertea spp2,063729PolNephtys cirrosa6,823652MollAbra sp2,055967SipOnchnesoma steenstrupi6,666541PolJasmineira sp5,572777PolApistobranchus tullbergi5,3747260-20TaxaDiscr. PowerPolAbyssoninoe hibernica5,15575PolAmpharetidae spp7,352503PolPectinaria koreni4,817464CruDiastylidae spp5,525461PolJasmineira candela4,584799MollThyasira croulinensis4,327353MollArcopagia balaustina3,94188CruNatatolana borealis4,018495MollCaudofoveata spp3,675514SipOnchnesoma squamatum3,8863CruByblis gaimardi3,649238PolPolydora sp3,815098CruAmpelisca gibba3,644492PolPectinaria auricoma3,344882PolHarmothoe glabra3,383863PolPolycipe vanelli3,165974PolLumbriclymeninae spp3,28294PolMyriochele oculata3,018177MollFalcidens crossotus3,138806PolNephtys hystricis3,103473PolNephtys hystricis3,10347360-80TaxaDiscr. Power10,9007>100TaxaDiscr. powerMollThyasira succisa10,9007>100TaxaDiscr. powerCruHarpini	Pol	Eumida ockelmanni	2,091024			•
NmtNemertea spp2,063729PolNephtys cirrosa6,823652MollAbra sp2,055967SipOnchnesoma steenstrupi6,666541PolJasmineira sp5,572777PolApistobranchus tullbergi5,3747260-20TaxaDiscr. PowerPolApistobranchus tullbergi5,374726PolAmpharetidae spp7,352503PolPectinaria koreni4,817464CruDiastylidae spp5,525461PolJasmineira candela4,584799MollThyasira croulinensis4,327353MollArcopagia balaustina3,94188CruNatatolana borealis4,018495MollCaudofoveata spp3,675514SipOnchnesoma squamatum3,8663CruByblis gaimardi3,64492PolPectinaria auricoma3,344882PolHarmothoe glabra3,38363PolEclysippe vanelli3,165974PolLumbriclymeninae spp3,28294PolMyriochele oculata3,018177MollFalcidens crossotus3,138806PolThyasira succisa10,9007>100TaxaDiscr. powerCruHarpinia sp7,835PolProtodorvillea kefersteini9,118824SipOnchnesoma steenstrupi6,859605MollLimatula subauriculata7,389348PolOctobranchus floriceps6,239891PolSpiophanes sp4,46852PolOwenia fusiformis5,977357CruBathyporeia sp4,345896 <td>Moll</td> <td>Tridonta montagui</td> <td>2,080584</td> <td>80-100</td> <td>Таха</td> <td>Discr. Power</td>	Moll	Tridonta montagui	2,080584	80-100	Таха	Discr. Power
MollAbra sp2,055967SipOnchnesoma steenstrupi6,666541PolJasmineira sp5,572777PolApistobranchus tullbergi5,3747260-20TaxaDiscr. PowerPolAbyssoninoe hibernica5,15575PolAmpharetidae spp7,352503PolPectinaria koreni4,817464CruDiastylidae spp5,52461PolJasmineira candela4,584799MollThyasira croulinensis4,327353MollArcopagia balaustina3,94188CruNatatolana borealis4,018495MollCaudofoveata spp3,675514SipOnchnesoma squamatum3,8863CruByblis gaimardi3,649238PolPectinaria auricoma3,344882PolHarmothoe glabra3,38363PolEclysippe vanelli3,165974PolLumbriclymeninae spp3,328294PolMyriochele oculata3,018177MollFalcidens crossotus3,138806PolTaxaDiscr. Power	Nmt	Nemertea spp	2,063729	Pol	Nephtys cirrosa	6,823652
NPDPolJasmineira sp5,5727770-20TaxaDiscr. PowerPolApistobranchus tullbergi5,3747260-20TaxaDiscr. PowerPolAbyssoninoe hibernica5,15575PolAmpharetidae spp7,352503PolPectinaria koreni4,817464CruDiastylidae spp5,525461PolJasmineira candela4,584799MollThyasira croulinensis4,327353MollArcopagia balaustina3,94188CruNatatolana borealis4,018495MollCaudofoveata spp3,675514SipOnchnesoma squamatum3,8863CruByblis gaimardi3,649238PolPolydora sp3,815098CruAmpelisca gibba3,644492PolPectinaria auricoma3,344882PolHarmothoe glabra3,383863PolEclysippe vanelli3,165974PolLumbriclymeninae spp3,328294PolMyriochele oculata3,018177MollFalcidens crossotus3,138806PolTaxaDiscr. PowerPolNephtys hystricis3,10347360-80TaxaDiscr. PowerFolProtodorvillea kefersteini9,118824SipOnchnesoma steenstrupi6,859605MollLimatula subauriculata7,389348PolOctobranchus floriceps6,239891PolSpiophanes sp4,46852PolOwenia fusiformis5,977357CruBathyporeia sp4,345896	Moll	Abra sp	2,055967	Sip	Onchnesoma steenstrupi	6,666541
NPDPolApistobranchus tullbergi5,3747260-20TaxaDiscr. PowerPolAbyssoninoe hibernica5,15575PolAmpharetidae spp7,352503PolPectinaria koreni4,817464CruDiastylidae spp5,525461PolJasmineira candela4,584799MollThyasira croulinensis4,327353MollArcopagia balaustina3,94188CruNatatolana borealis4,018495MollCaudofoveata spp3,675514SipOnchnesoma squamatum3,8863CruByblis gaimardi3,649238PolPolydora sp3,815098CruAmpelisca gibba3,644492PolPectinaria auricoma3,344882PolHarmothoe glabra3,383863PolEclysippe vanelli3,165974PolLumbriclymeninae spp3,328294PolMyriochele oculata3,018177MollFalcidens crossotus3,138806PolMyriasira succisa10,9007>100TaxaDiscr. powerMollThyasira succisa10,9007>100TaxaDiscr. powerGruHarpinia sp7,835PolProtodorvillea kefersteini9,118824SipOnchnesoma steenstrupi6,859605MollLimatula subauriculata7,389348PolOctobranchus floriceps6,239891PolSpiophanes sp4,46852PolOwenia fusiformis5,977357CruBathyporeia sp4,345896				Pol	Jasmineira sp	5.572777
0-20TaxaDiscr. PowerPolAbyssoninoe tansorgioterricaPolAmpharetidae spp7,352503PolPectinaria koreni4,817464CruDiastylidae spp5,525461PolJasmineira candela4,584799MollThyasira croulinensis4,327353MollArcopagia balaustina3,94188CruNatatolana borealis4,018495MollCaudofoveata spp3,675514SipOnchnesoma squamatum3,8863CruByblis gaimardi3,649238PolPolydora sp3,815098CruAmpelisca gibba3,644492PolPectinaria auricoma3,344882PolHarmothoe glabra3,383863PolPectinaria auricoma3,018177PolLumbriclymeninae spp3,328294PolMyriochele oculata3,018177MollFalcidens crossotus3,138806PolMyrioschele oculata10,9007>100TaxaDiscr. powerMollThyasira succisa10,9007>100TaxaDiscr. powerGr-80TaxaDiscr. PowerMollThyasira succisa10,9007>100TaxaDiscr. powerGruHarpinia sp7,835PolProtodorvillea kefersteini9,118824SipOnchnesoma steenstrupi6,859605MollLimatula subauriculata7,389348PolOctobranchus floriceps6,239891PolSpiophanes sp4,46852PolOwenia fusiformis5,977357 <td></td> <td>NPD</td> <td></td> <td>Pol</td> <td>Anistobranchus tullbergi</td> <td>5.374726</td>		NPD		Pol	Anistobranchus tullbergi	5.374726
PolAmpharetidae spp7,352503PolPectinaria koreni4,817464CruDiastylidae spp5,525461PolJasmineira candela4,584799MollThyasira croulinensis4,327353MollArcopagia balaustina3,94188CruNatatolana borealis4,018495MollCaudofoveata spp3,675514SipOnchnesoma squamatum3,8863CruByblis gaimardi3,649238PolPolydora sp3,815098CruAmpelisca gibba3,644492PolPectinaria auricoma3,344882PolHarmothoe glabra3,383863PolPectinaria auricoma3,165974PolLumbriclymeninae spp3,28294PolMyriochele oculata3,018177MollFalcidens crossotus3,138806PolMyriochele oculata10,9007>100TaxaDiscr. powerMollThyasira succisa10,9007>100TaxaDiscr. powerCruHarpinia sp7,835PolProtodorvillea kefersteini9,118824SipOnchnesoma steenstrupi6,859605MollLimatula subauriculata7,389348PolOctobranchus floriceps6,239891PolSpiophanes sp4,345896	0-20	Таха	Discr. Power	Pol	Abyssoninoe hibernica	5,15575
CruDiastylidae spp5,525461PolJasmineira candela4,584799MollThyasira croulinensis4,327353MollArcopagia balaustina3,94188CruNatatolana borealis4,018495MollCaudofoveata spp3,675514SipOnchnesoma squamatum3,8863CruByblis gaimardi3,649238PolPolydora sp3,815098CruAmpelisca gibba3,644492PolPectinaria auricoma3,344882PolHarmothoe glabra3,383863PolEclysippe vanelli3,165974PolLumbriclymeninae spp3,328294PolMyriochele oculata3,018177MollFalcidens crossotus3,138806PolMyriochele oculata10,9007>100TaxaDiscr. powerMollThyasira succisa10,9007>100TaxaDiscr. powerSipOnchnesoma steenstrupi6,859605MollLimatula subauriculata7,389348PolOctobranchus floriceps6,239891PolSpiophanes sp4,46852PolOwenia fusiformis5,977357CruBathyporeia sp4,345896	Pol	Ampharetidae spp	7.352503	Pol	Pectinaria koreni	4.817464
MollThyasira croulinensis4,327353MollArcopagia balaustina3,94188CruNatatolana borealis4,018495MollCaudofoveata spp3,675514SipOnchnesoma squamatum3,8863CruByblis gaimardi3,649238PolPolydora sp3,815098CruAmpelisca gibba3,644492PolPectinaria auricoma3,344882PolHarmothoe glabra3,38863PolEclysippe vanelli3,165974PolLumbriclymeninae spp3,328294PolMyriochele oculata3,018177MollFalcidens crossotus3,138806PolTaxaDiscr. PowerMollThyasira succisa10,9007>100TaxaDiscr. powerMollThyasira succisa10,9007>100Protodorvillea kefersteini9,118824SipOnchnesoma steenstrupi6,859605MollLimatula subauriculata7,389348PolOctobranchus floriceps6,239891PolSpiophanes sp4,345896PolOwenia fusiformis5,977357CruBathyporeia sp4,345896	Cru	Diastvlidae spp	5.525461	Pol	Jasmineira candela	4.584799
CruNatatolana borealis4,018495MollCaudofoveata spp3,675514SipOnchnesoma squamatum3,8863CruByblis gaimardi3,649238PolPolydora sp3,815098CruAmpelisca gibba3,644492PolPectinaria auricoma3,344882PolHarmothoe glabra3,383863PolEclysippe vanelli3,165974PolLumbriclymeninae spp3,328294PolMyriochele oculata3,018177MollFalcidens crossotus3,138806PolTaxaDiscr. PowerMollThyasira succisa10,9007>100TaxaDiscr. powerCruHarpinia sp7,835PolProtodorvillea kefersteini9,118824SipOnchnesoma steenstrupi6,859605MollLimatula subauriculata7,389348PolOctobranchus floriceps6,239891PolSpiophanes sp4,46852PolOwenia fusiformis5,977357CruBathyporeia sp4,345896	Moll	Thyasira croulinensis	4,327353	Moll	Arcopagia balaustina	3,94188
SipOnchnesoma squamatum3,8863CruByblis gaimardi3,649238PolPolydora sp3,815098CruAmpelisca gibba3,644492PolPectinaria auricoma3,344882PolHarmothoe glabra3,383863PolEclysippe vanelli3,165974PolLumbriclymeninae spp3,328294PolMyriochele oculata3,018177MollFalcidens crossotus3,138806PolMyriochele oculata10,9007>100TaxaDiscr. powerMollThyasira succisa10,9007>100TaxaDiscr. powerCruHarpinia sp7,835PolProtodorvillea kefersteini9,118824SipOnchnesoma steenstrupi6,859605MollLimatula subauriculata7,389348PolOctobranchus floriceps6,239891PolSpiophanes sp4,46852PolOwenia fusiformis5,977357CruBathyporeia sp4,345896	Cru	Natatolana borealis	4.018495	Moll	Caudofoveata spp	3.675514
PolPolydora sp3,815098CruAmpelisca gibba3,644492PolPectinaria auricoma3,344882PolHarmothoe glabra3,383863PolEclysippe vanelli3,165974PolLumbriclymeninae spp3,328294PolMyriochele oculata3,018177MollFalcidens crossotus3,138806PolMyriochele oculata3,018177MollFalcidens crossotus3,10347360-80TaxaDiscr. PowerMollThyasira succisa10,9007>100TaxaDiscr. powerCruHarpinia sp7,835PolProtodorvillea kefersteini9,118824SipOnchnesoma steenstrupi6,859605MollLimatula subauriculata7,389348PolOctobranchus floriceps6,239891PolSpiophanes sp4,46852PolOwenia fusiformis5,977357CruBathyporeia sp4,345896	Sip	Onchnesoma squamatum	3.8863	Cru	Bvblis gaimardi	3.649238
PolPectinaria auricoma3,344882PolHarmothoe glabra3,383863PolEclysippe vanelli3,165974PolLumbriclymeninae spp3,328294PolMyriochele oculata3,018177MollFalcidens crossotus3,138806PolNephtys hystricis3,10347360-80TaxaDiscr. PowerImage: Specific and	Pol	, Polydora sp	3,815098	Cru	Ampelisca gibba	3,644492
PolEclysippe vanelli3,165974PolLumbriclymeninae spp3,328294PolMyriochele oculata3,018177MollFalcidens crossotus3,138806PolNephtys hystricis3,10347360-80TaxaDiscr. PowerImage: Specific structureImage: Specific structureMollThyasira succisa10,9007>100TaxaDiscr. powerCruHarpinia sp7,835PolProtodorvillea kefersteini9,118824SipOnchnesoma steenstrupi6,859605MollLimatula subauriculata7,389348PolOctobranchus floriceps6,239891PolSpiophanes sp4,46852PolOwenia fusiformis5,977357CruBathyporeia sp4,345896	Pol	Pectinaria auricoma	3,344882	Pol	Harmothoe glabra	3,383863
PolMyriochele oculata3,018177MollFalcidens crossotus3,138806PolNephtys hystricis3,10347360-80TaxaDiscr. PowerMollThyasira succisa10,9007CruHarpinia sp7,835PolSipOnchnesoma steenstrupi6,859605PolOctobranchus floriceps6,239891PolOwenia fusiformis5,977357CruBathyporeia sp4,345896	Pol	Eclysippe vanelli	3,165974	Pol	Lumbriclymeninae spp	3,328294
PolNephtys hystricis3,10347360-80TaxaDiscr. Power-MollThyasira succisa10,9007>100TaxaDiscr. powerCruHarpinia sp7,835PolProtodorvillea kefersteini9,118824SipOnchnesoma steenstrupi6,859605MollLimatula subauriculata7,389348PolOctobranchus floriceps6,239891PolSpiophanes sp4,46852PolOwenia fusiformis5,977357CruBathyporeia sp4,345896	Pol	Myriochele oculata	3,018177	Moll	Falcidens crossotus	3,138806
60-80TaxaDiscr. PowerMollThyasira succisa10,9007CruHarpinia sp7,835PolProtodorvillea kefersteini9,118824SipOnchnesoma steenstrupi6,859605MollLimatula subauriculata7,389348PolOctobranchus floriceps6,239891PolSpiophanes sp4,46852PolOwenia fusiformis5,977357CruBathyporeia sp4,345896		•		Pol	Nephtys hystricis	3,103473
MollThyasira succisa10,9007>100TaxaDiscr. powerCruHarpinia sp7,835PolProtodorvillea kefersteini9,118824SipOnchnesoma steenstrupi6,859605MollLimatula subauriculata7,389348PolOctobranchus floriceps6,239891PolSpiophanes sp4,46852PolOwenia fusiformis5,977357CruBathyporeia sp4,345896	60-80	Таха	Discr. Power			
CruHarpinia sp7,835PolProtodorvillea kefersteini9,118824SipOnchnesoma steenstrupi6,859605MollLimatula subauriculata7,389348PolOctobranchus floriceps6,239891PolSpiophanes sp4,46852PolOwenia fusiformis5,977357CruBathyporeia sp4,345896	Moll	Thyasira succisa	10,9007	>100	Таха	Discr. power
SipOnchnesoma steenstrupi6,859605MollLimatula subauriculata7,389348PolOctobranchus floriceps6,239891PolSpiophanes sp4,46852PolOwenia fusiformis5,977357CruBathyporeia sp4,345896	Cru	Harpinia sp	7,835	Pol	Protodorvillea kefersteini	9,118824
PolOctobranchus floriceps6,239891PolSpiophanes sp4,46852PolOwenia fusiformis5,977357CruBathyporeia sp4,345896	Sip	Onchnesoma steenstrupi	6,859605	Moll	Limatula subauriculata	7,389348
Pol Owenia fusiformis 5,977357 Cru Bathyporeia sp 4,345896	Pol	Octobranchus floriceps	6,239891	Pol	Spiophanes sp	4,46852
	Pol	, Owenia fusiformis	5,977357	Cru	Bathyporeia sp	4,345896

_			_
Pol	Myriochele fragilis	5,713728	Pol
Pol	Notomastus latericeus	5,332132	Pol
Moll	Chaetoderma sp	5,133722	Pol
Moll	Abra longicallus	4,798199	Pol
Pol	Maldanidae spp	4,629968	Pol
Moll	Yoldiella tomlini	4,136782	Moll
Cru	Gnathia oxyurea	3,847077	Cru
Moll	Cuspidaria rostrata	3,616798	Cru
Ann	Pogonophora spp	3,575503	Pol
Cru	Leptophoxus falcatus	3,381366	Pol
Pol	Levinsenia gracilis	3,158367	Moll
Pol	Parougia caeca	3,147506	Moll
Pol	Polycirrus norvegicus	3,136879	Cru
Pol	Ditrupa arietina	3,095465	Pol
			Pol

	РАН	
0-20	Таха	Discr. Power
Moll	Cerastoderma minimum	10,60996
Moll	Kelliella miliaris	4,785084
Pol	Glycera lapidum	3,61454
Pol	Spiophanes kroyeri	3,53675
Pol	Prionospio cirrifera	2,990211
Pol	Eclysippe vanelli	2,782115
Moll	Yoldiella lucida	2,666953
Pol	Myriochele oculata	2,535863
Cru	Harpinia pectinata	2,291685
Pol	Ophelina norvegica	2,039363
20-40	Таха	Discr. Power
Pol	Euchone sp	4,009486
Cru	Vargula norvegica	2,353549
Pol	Jasmineira candela	2,245709
Moll	Thyasira obsoleta	2,060034

	тнс	
0-20	Таха	Discr. Power
Pol	Tharyx killariensis	6,364713
Sip	Onchnesoma squamatum	5,234209
Pol	Apistobranchus tenuis	5,075755
Moll	Lucinoma borealis	4,362557
Pol	Ditrupa arietina	4,278107
Pol	Notoproctus oculatus	3,978901
Pol	Chaetozone setosa	3,682913
Moll	Lima tulagwyni	3,215668
Pol	Pholoe inornata 3,162803	
Moll	Bathyarca pectunculoides	3,048278
40-60	Таха	Discr. Power
Moll	Kelliella miliaris	4,911002
Moll	Abra sp	2,658006
Pol	Euchone rubrocincta	2,589596
Ech	ch Leptosynapta inhaerens 2,48744	
Pol	Polydora sp	2,288969
Moll	Yoldiella tomlini	2,288969

Samytha sexcirrata	4,235233
Harmothoe fragilis	3,957857
Spiophanes wigleyi	3,852904
Aricidea suecica	3,778394
Cirrophorus furcatus	3,768706
Yoldiella tomlini	3,589396
Paraphoxus oculatus	3,58001
Gnathia oxyurea	3,48877
Opisthodonta pterochaeta	3,374767
Phoronis sp	3,303584
Philine sp	3,246238
Thyasira croulinensis	3,22447
Ampelisca tenuicornis	3,167683
Lumbrineris gracilis	3,160583
Pholoe synopthalmica	3,154559
Eteone flava	3,088329
Ampelisca typica	3.056986

Pol Cru

Pol	Myriochele heeri	2 220380
Pol	Polycirrus medusa	2,229309
Pol	Hormothoo sp	2,204723
Pol	Paradonois sp	2,07277
FUI	raiauoneis sp	2,030330
60-80	Таха	Discr. Power
Pol	Nothria hyperborea	4,870314
Pol	Capitella capitata	4,717545
Cru	Diastylis boecki	3,288317
Cru	Ampelisca spinipes	3,142838
Pol	Polydora sp	3,01036
Pol	Apistobranchus sp	2,743485
Pol	Myriochele fragilis	2,737228
Pol	Heteranomia squamula	2,584148
Cru	Amphilochidae spp	2,324931
Pol	Exogone sp	2,30946
Moll	Kelliella miliaris	2,301421
Cru	Synchelidium sp	2,17122
Moll	Scaphopoda spp	2,088037
Moll	Roxania utriculus	2,082105
Pol	Aricidea sp	2,021831
Pol	Lumbrineris sp	2,021365
80-100	Таха	Discr. Power
Pol	Abyssoninoe hibernica	5,81054
Pol	Jasmineira candela	4,612712
Moll	Falcidens crossotus	3,522078
Cru	Diastylis boecki	2,987873
Cru	Byblis gaimardi	2,637746
Cru	Harpinia pectinata	2,637746
Pol	<i>Praxillella</i> sp	2,491669
Pol	Nothria conchylega	2,449236
Pol	Lumbriclymeninae spp	2,443871
Pol	Pectinaria sp	2,342676
Pol	Prionospio dubia	2,31297
Moll	Cochlodesma praetenue	2,301718
Pol	Goniada norvegica	2,240022
Pol	Euclymene droebachiensis	2,203142
Moll	Thyasira pygmaea	2,188574
Pol	Terebellides stroemi	2,154269
Moll	Abra nitida	2,146227
Cru	Isaeidae spp	2,1111
Pol	Aphelochaeta sp	2,030384
Pol	Jasmineira sp	2,005748
Cru	Ampelisca gibba	2,002807
>100	Таха	Discr Power
Nmt	Nemertea son	5 031479
Pol	Aricidea cerrutii	J,UJ 1470
Pol	Cirratulus caudatus	4,100000
Pol	Chaptozone en	4,002073
Fcb	l ahidonlay digitato	4,100170
Pol	Ampharetidae epp	4,041402
Pol	Snionhanos hombuy	7,022100
	Spioprianes Dombyx	3,033032

Pol	Owenia fusiformis	3,575343
Coel	<i>Edwardsia</i> sp	3,527443
Pol	Harmothoe antilopes	3,479275
Ech	Labidoplax buskii	3,388044
Cru	Unciola planipes	3,182432
Pol	Goniada maculata	3,158512
Pol	Glycera alba	3,150501
Pol	Myriochele oculata	3,085613